917 research outputs found

    Solar Energy

    Get PDF
    This thesis is about Photovoltaic (PV) cells and its stresses in various directions by calculating the power generated using solar cells under different conditions to improve its efficiency. Our research studies found that using multi-junction cells with larger substrates can increase the efficiency to some extent which in practice is limited to 43 percent. The experiment was conducted using ten solar cells each with an area of 20.9?cm? ^2, where each cell gives 0.5 V and 0.4 A and a 1.25 ? resistor was used. The cells were connected in series. Once, the PV cells were fixed horizontally and the other time tested in tilted position under same outdoor condition. The purpose of testing PV cells was to investigate the efficiency under above mentioned conditions. The data collected from the readings was used in calculation, and we have obtained from the calculations that horizontally fixed cells gave 4.8 percent efficiency whereas tilted cells gave 6.6 percent efficiency. Hence, the ratio showed that fixed cells produced 37.5 percent more power compared to horizontally fixed cells. Our other experiment consisted of testing PV cells under different temperature conditions that was done using a freezer and an oven for temperature variation and a tungsten bulb was used as a light source. The purpose of performing this experiment was to investigate how the efficiency of PV cells is affected under extreme conditions. Part of our thesis was also including studies and analysis of produced energy by the solar panel installed on the roof of BTH building in Karlskrona, Sweden. The data consisted of energy produced from February up to August 2014. The investigation also included finding the highest produced energy during these months. We have found that the highest energy was generated on the 1st of July which was 12.86 kWh. Furthermore, we went deep into investigation of the 1st of July to know exactly which hour of that day the highest energy was produced. The data showed that the highest produced energy was at 12:19 and 13:19 which was 2.03 kWh. Ramzi: +46723231353, +966561993488 Zain Document type: Part of book or chapter of boo

    Learning health ‘safety’ within non-technical skills interprofessional simulation education: a qualitative study

    Get PDF
    Background: Healthcare increasingly recognises and focusses on the phenomena of ‘safe practice’ and ‘patient safety.’ Success with non-technical skills (NTS) training in other industries has led to widespread transposition to healthcare education, with communication and teamwork skills central to NTS frameworks. Objective: This study set out to identify how the context of interprofessional simulation learning influences NTS acquisition and development of ‘safety’ amongst learners. Methods: Participants receiving a non-technical skills (NTS) safety focussed training package were invited to take part in a focus group interview which set out to explore communication, teamwork, and the phenomenon of safety in the context of the learning experiences they had within the training programme. The analysis was aligned with a constructivist paradigm and took an interactive methodological approach. The analysis proceeded through three stages, consisting of open, axial, and selective coding, with constant comparisons taking place throughout each phase. Each stage provided categories that could be used to explore the themes of the data. Additionally, to ensure thematic saturation, transcripts of observed simulated learning encounters were then analysed. Results: Six themes were established at the axial coding level, i.e., analytical skills, personal behaviours, communication, teamwork, context, and pedagogy. Underlying these themes, two principal concepts emerged, namely: intergroup contact anxiety – as both a result of and determinant of communication – and teamwork, both of which must be considered in relation to context. These concepts have subsequently been used to propose a framework for NTS learning. Conclusions: This study highlights the role of intergroup contact anxiety and teamwork as factors in NTS behaviour and its dissipation through interprofessional simulation learning. Therefore, this should be a key consideration in NTS education. Future research is needed to consider the role of the affective non-technical attributes of intergroup contact anxiety and teamwork as focuses for education and determinants of safe behaviour

    Dissociation of Subjectively Reported and Behaviorally Indexed Mind Wandering by EEG Rhythmic Activity

    Get PDF
    Inattention to current activity is ubiquitous in everyday situations. Mind wandering is an example of such a state, and its related brain areas have been examined in the literature. However, there is no clear evidence regarding neural rhythmic activities linked to mind wandering. Using a vigilance task with thought sampling and electroencephalography recording, the current study simultaneously examined neural oscillatory activities related to subjectively reported and behaviorally indexed mind wandering. By implementing time-frequency analysis, we found that subjectively reported mind wandering, relative to behaviorally indexed, showed increased gamma band activity at bilateral frontal-central areas. By means of beamformer source imaging, we found subjectively reported mind wandering within the gamma band to be characterized by increased activation in bilateral frontal cortices, supplemental motor area, paracentral cortex and right inferior temporal cortex in comparison to behaviorally indexed mind wandering. These findings dissociate subjectively reported and behaviorally indexed mind wandering and suggest that a higher degree of executive control processes are engaged in subjectively reported mind wandering

    Prevalence and characteristics of progressive fibrosing interstitial lung disease in a prospective registry

    Get PDF
    Rationale Progressive fibrosing interstitial lung disease (PF-ILD) is characterized by progressive physiologic, symptomatic, and/or radiographic worsening. The real-world prevalence and characteristics of PF-ILD remain uncertain. Methods Patients were enrolled from the Canadian Registry for Pulmonary Fibrosis between 2015-2020. PF-ILD was defined as a relative forced vital capacity (FVC) decline ≥10%, death, lung transplantation, or any 2 of: relative FVC decline ≥5 and <10%, worsening respiratory symptoms, or worsening fibrosis on computed tomography of the chest, all within 24 months of diagnosis. Time-to-event analysis compared progression between key diagnostic subgroups. Characteristics associated with progression were determined by multivariable regression. Results Of 2,746 patients with fibrotic ILD (mean age 65±12 years, 51% female), 1,376 (50%) met PFILD criteria in the first 24 months of follow-up. PF-ILD occurred in 427 (59%) patients with idiopathic pulmonary fibrosis (IPF), 125 (58%) with fibrotic hypersensitivity pneumonitis (HP), 281 (51%) with unclassifiable ILD (U-ILD), and 402 (45%) with connective tissue diseaseassociated ILD (CTD-ILD). Compared to IPF, time to progression was similar in patients with HP (hazard ratio [HR] 0.96, 95% confidence interval, CI 0.79-1.17), but was delayed in patients with U-ILD (HR 0.82, 95% CI 0.71-0.96) and CTD-ILD (HR 0.65, 95% CI 0.56-0.74). Background treatment varied across diagnostic subtypes with 66% of IPF patients receiving antifibrotic therapy, while immunomodulatory therapy was utilized in 49%, 61%, and 37% of patients with CHP, CTD-ILD, and U-ILD respectively. Increasing age, male sex, gastroesophageal reflux disease, and lower baseline pulmonary function were independently associated with progression. Interpretation Progression is common in patients with fibrotic ILD, and is similarly prevalent in HP and IPF. Routinely collected variables help identify patients at risk for progression and may guide therapeutic strategie

    A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses

    Get PDF
    Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem

    A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector

    Get PDF
    A search for the dimuon decay of the Standard Model (SM) Higgs boson is performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in Run 2 pp collisions at root s = 13 TeV at the Large Hadron Collider. The observed (expected) significance over the background-only hypothesis for a Higgs boson with a mass of 125.09 GeV is 2.0 sigma (1.7 sigma). The observed upper limit on the cross section times branching ratio for pp -> H -> mu mu is 2.2 times the SM prediction at 95% confidence level, while the expected limit on a H -> mu mu signal assuming the absence (presence) of a SM signal is 1.1(2.0). The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the SM, is mu = 1.2 +/- 0.6. (C) 2020 The Author(s). Published by Elsevier B.V

    Measurement of hadronic event shapes in high-p T multijet final states at √s = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of event-shape variables in proton-proton collisions at large momentum transfer is presented using data collected at s = 13 TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb−1. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed. [Figure not available: see fulltext.

    Measurement of the total cross section and ρ -parameter from elastic scattering in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    In a special run of the LHC with β⋆= 2.5 km, proton–proton elastic-scattering events were recorded at s=13 TeV with an integrated luminosity of 340μb-1 using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam t variable in the range from - t= 2.5 · 10 - 4 GeV 2 to - t= 0.46 GeV 2 using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section σtot , parameters of the nuclear slope, and the ρ -parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit t→ 0 . These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the t-dependence. The results for σtot and ρ are σtot(pp→X)=104.7±1.1mb,ρ=0.098±0.011. The uncertainty in σtot is dominated by the luminosity measurement, and in ρ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude

    Alignment of the ATLAS Inner Detector in Run 2

    Get PDF
    The performance of the ATLAS Inner Detector alignment has been studied using pp collision data at v s = 13 TeV collected by the ATLAS experiment during Run 2 (2015-2018) of the Large Hadron Collider (LHC). The goal of the detector alignment is to determine the detector geometry as accurately as possible and correct for time-dependent movements. The Inner Detector alignment is based on the minimization of track-hit residuals in a sequence of hierarchical levels, from global mechanical assembly structures to local sensors. Subsequent levels have increasing numbers of degrees of freedom; in total there are almost 750,000. The alignment determines detector geometry on both short and long timescales, where short timescales describe movementswithin anLHCfill. The performance and possible track parameter biases originating from systematic detector deformations are evaluated. Momentum biases are studied using resonances decaying to muons or to electrons. The residual sagitta bias and momentum scale bias after alignment are reduced to less than similar to 0.1 TeV-1 and 0.9 x 10(-3), respectively. Impact parameter biases are also evaluated using tracks within jets

    Measurement of the charge asymmetry in top-quark pair production in association with a photon with the ATLAS experiment

    Get PDF
    A measurement of the charge asymmetry in top-quark pair (tt ̄) production in association with a photon is presented. The measurement is performed in the single-lepton tt ̄ decay channel using proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN at a centre-of-mass-energy of 13 TeV during the years 2015–2018, corresponding to an integrated luminosity of 139 fb−1. The charge asymmetry is obtained from the distribution of the difference of the absolute rapidities of the top quark and antiquark using a profile likelihood unfolding approach. It is measured to be AC=−0.003±0.029 in agreement with the Standard Model expectation
    corecore