2,151 research outputs found

    Permissivity of Dipeptidyl Peptidase 4 Orthologs to Middle East Respiratory Syndrome Coronavirus Is Governed by Glycosylation and Other Complex Determinants

    Get PDF
    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. While bat, camel, and human DPP4 support MERS-CoV infection, several DPP4 orthologs, including mouse, ferret, hamster, and guinea pig DPP4, do not. Previous work revealed that glycosylation of mouse DPP4 plays a role in blocking MERS-CoV infection. Here, we tested whether glycosylation also acts as a determinant of permissivity for ferret, hamster, and guinea pig DPP4. We found that, while glycosylation plays an important role in these orthologs, additional sequence and structural determinants impact their ability to act as functional receptors for MERS-CoV. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and better inform our understanding of virus-receptor interactions associated with disease emergence and host susceptibility. IMPORTANCE MERS-CoV is a recently emerged zoonotic virus that is still circulating in the human population with an ∼35% mortality rate. With no available vaccines or therapeutics, the study of MERS-CoV pathogenesis is crucial for its control and prevention. However, in vivo studies are limited because MERS-CoV cannot infect wild-type mice due to incompatibilities between the virus spike and the mouse host cell receptor, mouse DPP4 (mDPP4). Specifically, mDPP4 has a nonconserved glycosylation site that acts as a barrier to MERS-CoV infection. Thus, one mouse model strategy has been to modify the mouse genome to remove this glycosylation site. Here, we investigated whether glycosylation acts as a barrier to infection for other nonpermissive small-animal species, namely, ferret, guinea pig, and hamster. Understanding the virus-receptor interactions for these DPP4 orthologs will help in the development of additional animal models while also revealing species-specific differences impacting MERS-CoV host range

    EBF1 and PAX5 control pro-B cell expansion via opposing regulation of the Myc gene

    Get PDF
    Genes encoding B lineage restricted transcription factors are frequently mutated in B-lymphoid leukemias, suggesting a close link between normal and malignant B-cell development. One of these transcription factors is Early B cell Factor 1 (EBF1), a protein of critical importance for lineage specification and survival of B-lymphoid progenitors. Here, we report that impaired EBF1 function in mouse B-cell progenitors results in reduced expression of Myc. Ectopic expression of MYC partially rescued B-cell expansion in the absence of EBF1 both in vivo and in vitro. Using chromosome conformation analysis in combination with ATAC-seq, ChIP-seq and reporter gene assays, we identified six EBF responsive enhancer elements within the Myc locus. CRISPR-Cas9 mediated targeting of EBF1 binding sites identified one element of key importance for Myc expression and pro-B cell expansion. These data provide evidence that Myc is a direct target of EBF1. Furthermore, ChIP-seq analysis revealed that several regulatory elements in the Myc locus are targets of PAX5. However, ectopic expression of PAX5 in EBF1 deficient cells inhibits the cell cycle and reduces Myc expression, suggesting that EBF1 and PAX5 act in an opposing manner to regulate Myc levels. This hypothesis is further substantiated by the finding that Pax5 inactivation reduces requirements for EBF1 in pro-B cell expansion. The binding of EBF1 and PAX5 to regulatory elements in the human MYC gene in a B-ALL cell line indicate that the EBF1:PAX5:MYC regulatory loop is conserved and may control both normal and malignant B-cell development

    Dissection of progenitor compartments resolves developmental trajectories in B-lymphopoiesis

    Get PDF
    To understand the developmental trajectories in early lymphocyte differentiation, we identified differentially expressed surface markers on lineage-negative lymphoid progenitors (LPs). Single-cell polymerase chain reaction experiments allowed us to link surface marker expression to that of lineage-associated transcription factors (TFs) and identify GFRA2 and BST1 as markers of early B cells. Functional analyses in vitro and in vivo as well as single-cell gene expression analyses supported that surface expression of these proteins defined distinct subpopulations that include cells from both the classical common LPs (CLPs) and Fraction A compartments. The formation of the GFRA2-expressing stages of development depended on the TF EBF1, critical both for the activation of stage-specific target genes and modulation of the epigenetic landscape. Our data show that consecutive expression of Ly6D, GFRA2, and BST1 defines a developmental trajectory linking the CLP to the CD19(+) progenitor compartment.Peer reviewe

    Biology and Impacts of Pacific Island Invasive Species: 8. Eleutherodactylus planirostris, the Greenhouse Frog (Anura: Eleutherodactylidae)

    Get PDF
    The greenhouse frog, Eleutherodactylus planirostris, is a direct-developing (i.e., no aquatic stage) frog native to Cuba and the Bahamas. It was introduced to Hawaii via nursery plants in the early 1990s and then subsequently from Hawaii to Guam in 2003. The greenhouse frog is now widespread on five Hawaiian Islands and Guam. Infestations are often overlooked due to the frog’s quiet calls, small size, and cryptic behavior, and this likely contributes to its spread. Because the greenhouse frog is an insectivore, introductions may reduce invertebrates. In Hawaii, the greenhouse frog primarily consumes ants, mites, and springtails, and obtains densities of up to 12,500 frogs ha-1. At this density, it is estimated that they can consume up to 129,000 invertebrates ha-1 night-1. They are a food source for the non-native brown tree snake in Guam and may be a food source for other non-native species. They may also compete with other insectivores for available prey. The greatest direct economic impacts of the invasions are to the nursery trade that must treat infested shipments. Although various control methods have been developed to control frogs in Hawaii, and citric acid, in particular, is effective in reducing greenhouse frogs, the frog’s inconspicuous nature often prevents populations from being identified and managed

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Wine and other alcohol consumption and risk of ovarian cancer in the California Teachers Study cohort

    Get PDF
    OBJECTIVE: Whether alcohol consumption influences ovarian cancer risk is unclear. Therefore, we investigated the association between alcohol intake at various ages and risk of ovarian cancer. METHODS: Among 90,371 eligible members of the California Teachers Study cohort who completed a baseline alcohol assessment in 1995–1996, 253 women were diagnosed with epithelial ovarian cancer by the end of 2003. Multivariate Cox proportional hazards regression analysis was performed to estimate relative risks (RRs) and 95% confidence intervals (CIs). RESULTS: Consumption of total alcohol, beer, or liquor in the year prior to baseline, at ages 30–35 years, or at ages 18–22 years was not associated with risk of ovarian cancer. Consumption of at least one glass per day of wine, compared to no wine, in the year before baseline was associated with increased risk of developing ovarian cancer: RR = 1.57 (95% CI 1.11–2.22), P(trend) = 0.01. The association with wine intake at baseline was particularly strong among peri-/post-menopausal women who used estrogen-only hormone therapy and women of high socioeconomic status. CONCLUSIONS: Alcohol intake does not appear to affect ovarian cancer risk. Constituents of wine other than alcohol or, more likely, unmeasured determinants of wine drinking were associated with increased risk of ovarian cancer
    corecore