318 research outputs found

    The Sloan Digital Sky Survey Reverberation Mapping project : composite lags at z ≤ 1

    Get PDF
    Funding: STFC grant ST/M001296/1 (KH).We present composite broad-line region (BLR) reverberation mapping lag measurements for Hα, Hβ, He II λ4686, and Mg II for a sample of 144, z ≲ 1 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Using only the 32-epoch spectroscopic light curves in the first six-month season of SDSS-RM observations, we compile correlation function measurements for individual objects and then coadd them to allow the measurement of the average lags for our sample at mean redshifts of 0.4 (for Hα) and ∼0.65 (for the other lines). At similar quasar luminosities and redshifts, the sample-averaged lag decreases in the order of Mg II, Hα, Hβ, and He II. This decrease in lags is accompanied by an increase in the mean line width of the four lines, and is roughly consistent with the virialized motion for BLR gas in photoionization equilibrium. These are among the first RM measurements of stratified BLR structure at z > 0.3. Dividing our sample by luminosity, Hα shows clear evidence of increasing lags with luminosity, consistent with the expectation from the measured BLR size-luminosity relation based on Hβ. The other three lines do not show a clear luminosity trend in their average lags due to the limited dynamic range of luminosity probed and the poor average correlation signals in the divided samples, a situation that will be improved with the incorporation of additional photometric and spectroscopic data from SDSS-RM. We discuss the utility and caveats of composite lag measurements for large statistical quasar samples with reverberation mapping dataPostprintPeer reviewe

    Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Full text link
    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.Comment: Accepted for publication in The Astrophysical Journal (33 pages, 5 figures, 8 tables

    Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection

    Get PDF
    Emerging reports of rare neurological complications associated with COVID-19 infection and vaccinations are leading to regulatory, clinical and public health concerns. We undertook a self-controlled case series study to investigate hospital admissions from neurological complications in the 28 days after a first dose of ChAdOx1nCoV-19 (n = 20,417,752) or BNT162b2 (n = 12,134,782), and after a SARS-CoV-2-positive test (n = 2,005,280). There was an increased risk of Guillain–Barré syndrome (incidence rate ratio (IRR), 2.90; 95% confidence interval (CI): 2.15–3.92 at 15–21 days after vaccination) and Bell’s palsy (IRR, 1.29; 95% CI: 1.08–1.56 at 15–21 days) with ChAdOx1nCoV-19. There was an increased risk of hemorrhagic stroke (IRR, 1.38; 95% CI: 1.12–1.71 at 15–21 days) with BNT162b2. An independent Scottish cohort provided further support for the association between ChAdOx1nCoV and Guillain–Barré syndrome (IRR, 2.32; 95% CI: 1.08–5.02 at 1–28 days). There was a substantially higher risk of all neurological outcomes in the 28 days after a positive SARS-CoV-2 test including Guillain–Barré syndrome (IRR, 5.25; 95% CI: 3.00–9.18). Overall, we estimated 38 excess cases of Guillain–Barré syndrome per 10 million people receiving ChAdOx1nCoV-19 and 145 excess cases per 10 million people after a positive SARS-CoV-2 test. In summary, although we find an increased risk of neurological complications in those who received COVID-19 vaccines, the risk of these complications is greater following a positive SARS-CoV-2 test

    First-Year Spectroscopy for the SDSS-II Supernova Survey

    Get PDF
    This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05 - 0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existing in the majority of our SN spectra.Comment: Accepted for publication in The Astronomical Journal(47pages, 9 figures

    Separation of Anti-Proliferation and Anti-Apoptotic Functions of Retinoblastoma Protein through Targeted Mutations of Its A/B Domain

    Get PDF
    BACKGROUND: The human retinoblastoma susceptibility gene encodes a nuclear phosphoprotein RB, which is a negative regulator of cell proliferation. The growth suppression function of RB requires an evolutionarily conserved A/B domain that contains two distinct peptide-binding pockets. At the A/B interface is a binding site for the C-terminal trans-activation domain of E2F. Within the B-domain is a binding site for proteins containing the LxCxE peptide motif. METHODOLOGY/PRINCIPLE FINDINGS: Based on the crystal structure of the A/B domain, we have constructed an RB-K530A/N757F (KN) mutant to disrupt the E2F- and LxCxE-binding pockets. The RB-K530A (K) mutant is sufficient to inactivate the E2F-binding pocket, whereas the RB-N757F (N) mutant is sufficient to inactivate the LxCxE-binding pocket. Each single mutant inhibits cell proliferation, but the RB-KN double mutant is defective in growth suppression. Nevertheless, the RB-KN mutant is capable of reducing etoposide-induced apoptosis. CONCLUSION/SIGNIFICANCE: Previous studies have established that RB-dependent G1-arrest can confer resistance to DNA damage-induced apoptosis. Results from this study demonstrate that RB can also inhibit apoptosis independent of growth suppression

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    The sl_3 web algebra

    Get PDF
    In this paper we use Kuperberg’s sl3-webs and Khovanov’s sl3-foams to define a new algebra KS, which we call the sl3-web algebra. It is the sl3 analogue of Khovanov’s arc algebra. We prove that KS is a graded symmetric Frobenius algebra. Furthermore, we categorify an instance of q-skew Howe duality, which allows us to prove that KS is Morita equivalent to a certain cyclotomic KLR-algebra of level 3. This allows us to determine the split Grothendieck group K0 (WS )Q(q) , to show that its center is isomorphic to the cohomology ring of a certain Spaltenstein variety, and to prove that KS is a graded cellular algebra.info:eu-repo/semantics/publishedVersio

    Embodying compassion: A virtual reality paradigm for overcoming excessive self-criticism

    Get PDF
    Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions.N/

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    High Prevalence of Extended-Spectrum Beta Lactamases among Salmonella enterica Typhimurium Isolates from Pediatric Patients with Diarrhea in China

    Get PDF
    We investigated the extended-spectrum beta lactamases among 62 Salmonella enterica Typhimurium isolates recovered from children with diarrhea in a Chinese pediatric hospital. A large proportion of S. enterica Typhimurium isolates were resistant to multiple antimicrobial agents, including ampicillin (90.3%), tetracycline (80.6%), trimethoprim/sulfamethoxazole (74.2%), chloramphenicol (66.1%), cefotaxime (27.4%). Forty-nine (79.0%) of S. enterica Typhimurium isolates were positive for blaTEM-1b and resistant to ampicillin. Thirteen S. enterica Typhimurium isolates (21.0%) were positive for blaCTX-M-1-group and blaCTX-M-9-group, and all isolates harboring blaCTX-M genes were positive for ISEcp1. Two main clones (PFGE type A and D) accounted for nearly 70% of S. enterica Typhimurium isolates, and 7 CTX-M-producing isolates belonged to PFGE type D. Collectively, our data reveal multi-drug resistance and a high prevalence of extended spectrum beta lactamases among S. enterica Typhimurium isolates from children in China. In addition, we report the first identification of blaCTX-M-55 within Salmonella spp. Our data also suggest that clonal spread is responsible for the dissemination of S. enterica Typhimurium isolates
    corecore