9 research outputs found

    Cx43-Associated Secretome and Interactome Reveal Synergistic Mechanisms for Glioma Migration and MMP3 Activation

    Get PDF
    Extracellular matrix (ECM) remodeling, degradation and glioma cell motility are critical aspects of glioblastoma multiforme (GBM). Despite being a rich source of potential biomarkers and targets for therapeutic advance, the dynamic changes occurring within the extracellular environment that are specific to GBM motility have yet to be fully resolved. The gap junction protein connexin43 (Cx43) increases glioma migration and invasion in a variety of in vitro and in vivo models. In this study, the upregulation of Cx43 in C6 glioma cells induced morphological changes and the secretion of proteins associated with cell motility. Demonstrating the selective engagement of ECM remodeling networks, secretome analysis revealed the near-binary increase of osteopontin and matrix metalloproteinase-3 (MMP3), with gelatinase and NFF-3 assays confirming the proteolytic activities. Informatic analysis of interactome and secretome downstream of Cx43 identifies networks of glioma motility that appear to be synergistically engaged. The data presented here implicate ECM remodeling and matrikine signals downstream of Cx43/MMP3/osteopontin and ARK1B10 inhibition as possible avenues to inhibit GBM

    Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 5: Variability of the ultraviolet continuum and emission lines of NGC 3783

    Get PDF
    We report on the results of intensive ultraviolet spectral monitoring of the Seyfert 1 galaxy NGC 3783. The nucleus of NGC 3783 was observed with the International Ultraviolet Explorer satellite on a regular basis for a total of 7 months, once every 4 days for the first 172 days and once every other day for the final 50 days. Significant variability was observed in both continuum and emission-line fluxes. The light curves for the continuum fluxes exhibited two well-defined local minima or 'dips,' the first lasting is less than or approximately 20 days and the second is less than or approximately 4 days, with additional episodes of relatively rapid flickering of approximately the same amplitude. As in the case of NGC 5548 (the only other Seyfert galaxy that has been the subject of such an intensive, sustained monitoring effort), the largest continuum variations were seen at the shortest wavelengths, so that the continuum became 'harder' when brighter. The variations in the continuum occurred simultaneously at all wavelengths (delta(t) is less than 2 days). Generally, the amplitude of variability of the emission lines was lower than (or comparable to) that of the continuum. Apart from Mg II (which varied little) and N V (which is relatively weak and badly blended with Ly(alpha), the light curves of the emission lines are very similar to the continuum light curves, in each case with a small systematic delay or 'lag.' As for NGC 5548, the highest ionization lines seem to respond with shorter lags than the lower ionization lines. The lags found for NGC 3783 are considerably shorter than those obtained for NGC 5548, with values of (formally) approximately 0 days for He II + O III), and approximately 4 days for Ly(alpha) and C IV. The data further suggest lags of approximately 4 days for Si IV + O IV) and 8-30 days for Si III + C III). Mg II lagged the 1460 A continuum by approximately 9 days, although this result depends on the method of measuring the line flux and may in fact be due to variability of the underlying Fe II lines. Correlation analysis further shows that the power density spectrum contains substantial unresolved power over timescales of is less than or approximately 2 days, and that the character of the continuum variability may change with time

    The First Post-Kepler Brightness Dips of KIC 8462852

    Get PDF
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process

    The First Post-Kepler Brightness Dips of KIC 8462852

    Full text link

    Non-chemical Vegetation Management Using Fraise Mowing in Naturalized Golf Course Grasslands

    Full text link
    57 pagesResponding to public pressure to reduce synthetic chemical use and combating the rise of herbicide resistance in amenity grasslands are challenging due to the lack of alternative options. Additionally, the changing climate is less conducive to traditional grassland species success. The ability to rapidly renovate grassland surfaces could provide solutions to both challenges by reducing weed seed pressure and establishing genetically improved, well adapted varieties. Fraise mowing is an aggressive cultivation practice designed to harvest verdure, organic matter, and soil to a depth of 5 cm while allowing turfgrass to reestablish from unharvested rhizomes or provide an advantageous seedbed for establishing via seed or sod. Given the weed seed bank accumulates near the soil surface in no-till systems, we hypothesized fraise mowing could be an effective means of weed seed bank harvest and long-term, non-chemical weed control. Field experiments were conducted from 2017 – 2019 at the Vineyard Golf Club (Edgartown, MA) in low-maintenance, naturalized fine fescue rough heavily infested with smooth crabgrass (Digitaria ischaemum (Schreb.) Muhl.). Three weed seed bank harvest depths and two grassland establishment rates across five timings were evaluated for preventing weed re-infestation. Prior to fraise mowing, soil cores were collected from the study area and subjected to seedbank analysis. Similarly, seedbank analysis of harvested fraise mow debris was completed to determine efficacy of weed seed harvest. Despite a substantial reduction in the smooth crabgrass weed seed bank and a significant effect of timing and harvest depth on re-infestation, smooth crabgrass surpassed thresholds (<15%) by the end of the first full growing season, indicating the need for additional follow-up treatments for commercially acceptable control

    Agricultural Commodity Exchanges and the Development of Grain Markets and Trade in Africa: A Review of Recent Experience

    No full text
    Vibrant agricultural commodity exchanges will greatly enhance the performance of Africa’s agricultural sectors and contribute to overall economic development. Yet specific conditions in grain markets are required for agricultural commodity exchanges to develop.1 The absence or short-lived nature of many of these conditions explains why commodity exchanges for staple grains have remained stunted in Sub-Saharan Africa despite strong interest in their development by the international donor community and by most elements of the private sector. This study identifies these preconditions and assesses the scope for development organizations to support the sustainable development of commodity exchanges in eastern and southern Africa

    Simulation and Optimization Studies of the LHCb Beetle Readout ASIC and Machine Learning Approach for Pulse Shape Reconstruction

    Get PDF
    The optimization of the Beetle readout ASIC and the performance of the software for the signal processing based on machine learning methods are presented. The Beetle readout chip was developed for the LHCb (Large Hadron Collider beauty) tracking detectors and was used in the VELO (Vertex Locator) during Run 1 and 2 of LHC data taking. The VELO, surrounding the LHC beam crossing region, was a leading part of the LHCb tracking system. The Beetle chip was used to read out the signal from silicon microstrips, integrating and amplifying it. The studies presented in this paper cover the optimization of its electronic configuration to achieve the lower power consumption footprint and the lower operational temperature of the sensors, while maintaining a good condition of the analogue response of the whole chip. The studies have shown that optimizing the operational temperature is possible and can be beneficial when the detector is highly irradiated. Even a single degree drop in silicon temperature can result in a significant reduction in the leakage current. Similar studies are being performed for the future silicon tracker, the Upstream Tracker (UT), which will start operating at LHC in 2021. It is expected that the inner part of the UT detector will suffer radiation damage similar to the most irradiated VELO sensors in Run 2. In the course of analysis we also developed a general approach for the pulse shape reconstruction using an ANN approach. This technique can be reused in case of any type of front-end readout chip

    Characterization of the Nucleus, Morphology, and Activity of Interstellar Comet 2I/Borisov by Optical and Near-infrared GROWTH, Apache Point, IRTF, ZTF, and Keck Observations

    Get PDF
    International audienceWe present visible and near-infrared (NIR) photometric and spectroscopic observations of interstellar object (ISO) 2I/Borisov taken from 2019 September 10 to 2019 December 20 using the GROWTH, the Apache Point Observatory Astrophysical Research Consortium 3.5 m, and the NASA Infrared Telescope Facility 3.0 m combined with pre- and postdiscovery observations of 2I obtained by the Zwicky Transient Facility from 2019 March 17 to 2019 May 5. Comparison with imaging of distant solar system comets shows an object very similar to mildly active solar system comets with an outgassing rate of ∼1027 mol s−1. The photometry, taken in filters spanning the visible and NIR range, shows a gradual brightening trend of ∼0.03 mag day−1 since 2019 September 10 UTC for a reddish object becoming neutral in the NIR. The light curve from recent and prediscovery data reveals a brightness trend suggesting the recent onset of significant H2O sublimation with the comet being active with super volatiles such as CO at heliocentric distances >6 au consistent with its extended morphology. Using the advanced capability to significantly reduce the scattered light from the coma enabled by high-resolution NIR images from Keck adaptive optics taken on 2019 October 4, we estimate a diameter for 2I’s nucleus of ≲1.4 km. We use the size estimates of 1I/’Oumuamua and 2I/Borisov to roughly estimate the slope of the ISO size distribution, resulting in a slope of ∼3.4 ± 1.2, similar to solar system comets and bodies produced from collisional equilibrium
    corecore