40 research outputs found

    Leucaena Toxicity: A New Perspective on the Most Widely Used Forage Tree Legume

    Get PDF
    The tree legume Leucaena leucocephala (leucaena) is a high quality ruminant feed, vitally important for livestock production in the tropics despite the presence of mimosine in the leaves. This toxic non-protein amino acid has the potential to limit productivity and adversely affect the health of animals. The discovery and subsequent distribution in Australia of the ruminal bacterium Synergistes jonesii as an oral inoculum was shown in the 1980s to overcome these toxic effects. However, recent surveys of the status of toxicity worldwide; improved understanding of the chemistry and mode of action of the toxins; new techniques for molecular sequencing; and concerns about the efficacy of the in vitro inoculum; have cast doubt on some past understanding of leucaena toxicity and provides new insights into the geographical spread of S. jonesii. There is also confusion and ignorance regarding the occurrence and significance of toxicity in many countries worldwide. Ongoing research into the taxonomy and ecology of the Synergistes phylum, improved methods of inoculation, improved management solutions, along with awareness-raising extension activities, are vital for the future success of leucaena feeding systems

    The Efficacy of \u3cem\u3ein vitro Synergistes jonesii\u3c/em\u3e Inoculum in Preventing DHP Toxicity in Steers Fed Leucaena-Grass Diets

    Get PDF
    Leucaena leucocephala (leucaena) is a valuable forage tree legume for tropical animal production that contains the toxin mimosine. The breakdown products of mimosine in ruminants (3,4-DHP and 2,3-DHP) can adversely affect their health and limit weight gains (Jones and Hegarty 1984). The rumen bacterium Synergistes jonesii, introduced into Australia in 1983 was shown to completely and rapidly degrade these toxins to safe levels (Jones and Megarrity 1986). Since 1996, an in vitro produced inoculum has been made commercially available to Australian graziers (Klieve et al. 2002). Accordingly, the issue of leucaena toxicity in Australia was thought to be resolved. However, extensive testing in 2004 found that up to 50% of Queensland cattle herds consuming leucaena were excreting high levels of urinary DHP suggesting sub-clinical toxicity remained an issue for graziers (Dalzell et al. 2012). Some of these herds had previously been inoculated with in vitro S. jonesii suggesting the inoculum may not be able to either persist within a herd, or remain effective in degrading DHP. The aim of this study was to assess the capability of the in vitro S. jonesii inoculum to efficiently break down DHP in a controlled feeding trial environment

    Is There Genetic Diversity in the ‘Leucaena Bug’ \u3cem\u3eSynergistes jonesii\u3c/em\u3e Which May Reflect Ability to Degrade Leucaena Toxins?

    Get PDF
    Leucaena leucocephala, a nutritionally rich forage tree legume, contains a non-protein amino acid, mimosine, which is degraded by ruminal bacteria to toxic metabolites 3,4-DHP and 2,3-DHP resulting in goitre-like symptoms in animals, severely restricting weight gain. Raymond Jones, in the early 1980s, discovered the ‘leucaena bug’ in the rumen of goats in Hawaii that degraded these toxic DHP metabolites into non-toxic compounds (Jones and Lowry 1984) which was named Synergistes jonesii (Allison et al. 1992) Subsequently, a rumen inoculum containing S. jonesii was used as an ‘oral drench’ for cattle, kept in continuous culture (Klieve et al. 2002) and supplied to farmers to dose cattle foraging on leucaena. Studies on Queensland herds that received this oral drench showed that up to 50% of 44 herds grazing on leucaena had apparent subclinical toxicity based on high 3,4- and 2,3-DHP excretion in urine (Dalzell et al., 2012). In another study by Graham et al. (2013), a 16S rDNA nested PCR showed that rumen digesta from 6 out of 8 properties tested had a variant DNA profile from S. jonesii ATCC 78.1 strain, which suggested a different strain of the bacterium. It was postulated that either the continually cultured oral inoculum may have undergone genetic modification and/or that animals could harbor other DHP degrading bacteria or S. jonesii strains with differential DHP degrading potential (McSweeney et al. unpublished). The present study looks at changes in the 16S rDNA gene at the molecular level that may suggest divergence from the type strain S. jonesii 78.1 (ATCC) in Queensland cattle as well as in cattle and other ruminants, internationally. These changes can appear as discrete mutations or ‘single nucleotide polymorphisms’ (SNPs) and may be correlated to their ability to degrade DHP, relative to the type strain

    Defluorination of Sodium Fluoroacetate by Bacteria from Soil and Plants in Brazil

    Get PDF
    The aim of this work was to isolate and identify bacteria able to degrade sodium fluoroacetate from soil and plant samples collected in areas where the fluoroacetate-containing plants Mascagnia rigida and Palicourea aenofusca are found. The samples were cultivated in mineral medium added with 20 mmol L−1 sodium fluoroacetate. Seven isolates were identified by 16S rRNA gene sequencing as Paenibacillus sp. (ECPB01), Burkholderia sp. (ECPB02), Cupriavidus sp. (ECPB03), Staphylococcus sp. (ECPB04), Ancylobacter sp. (ECPB05), Ralstonia sp. (ECPB06), and Stenotrophomonas sp. (ECPB07). All seven isolates degraded sodium-fluoroacetate-containing in the medium, reaching defluorination rate of fluoride ion of 20 mmol L−1. Six of them are reported for the first time as able to degrade sodium fluoroacetate (SF). In the future, some of these microorganisms can be used to establish in the rumen an engineered bacterial population able to degrade sodium fluoroacetate and protect ruminants from the poisoning by this compound

    Prevalence of DHP Toxicity and Detection of \u3cem\u3eS. jonesii\u3c/em\u3e in Ruminants Consuming \u3cem\u3eLeucaena leucocephala\u3c/em\u3e in Eastern Indonesia

    Get PDF
    Leucaena leucocephala (leucaena) is a productive forage tree legume widely used in eastern Indonesia. While highly nutritious, it possesses the toxin mimosine which adversely affects animal production. In ruminants, mimosine is readily converted to the two isomers of dihydroxypyridine (3,4-DHP and 2,3-DHP) known to cause goitre, suppress appetite, and cause severe mineral deficiencies. These adverse symptoms may be partially responsible for the reluctance of some farmers to feed leucaena. A bacterium capable of complete degradation of DHP, Synergistes jonesii, originally discovered in Hawaii in goats consuming leucaena (Jones and Megarrity 1986), was later found in Indonesia which led to the assumption that all Indonesian ruminants were protected from leucaena toxicity even on 100% leucaena diets. The objective of this study, conducted during October-November 2011, was to confirm this hypothesis via an extensive survey of the toxicity status of ruminants consuming leucaena in eastern Indonesia

    SPRING: an RCT study of probiotics in the prevention of gestational diabetes mellitus in overweight and obese women

    Get PDF
    Background: Obesity is increasing in the child-bearing population as are the rates of gestational diabetes. Gestational diabetes is associated with higher rates of Cesarean Section for the mother and increased risks of macrosomia, higher body fat mass, respiratory distress and hypoglycemia for the infant. Prevention of gestational diabetes through life style intervention has proven to be difficult. A Finnish study showed that ingestion of specific probiotics altered the composition of the gut microbiome and thereby metabolism from early gestation and decreased rates of gestational diabetes in normal weight women. In SPRING (the Study of Probiotics IN the prevention of Gestational diabetes), the effectiveness of probiotics ingestion for the prevention of gestational diabetes will be assessed in overweight and obese women

    The Beaker phenomenon and the genomic transformation of northwest Europe

    Get PDF
    From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain’s gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries

    Leucaena toxicity: a new perspective on the most widely used forage tree legume

    No full text
    The tree legume <em>Leucaena leucocephala</em> (leucaena) is a high quality ruminant feed, vitally important for livestock production in the tropics, despite the presence of mimosine in the leaves. This toxic non-protein amino acid has the potential to limit productivity and adversely affect the health of animals. In the 1980s, the ruminal bacterium <em>Synergistes jonesii</em> was discovered and subsequently distributed in Australia as an oral inoculum to overcome these toxic effects. However, in recent times, a number of factors, including: surveys of the status of toxicity worldwide; improved understanding of the chemistry and mode of action of the toxins; new techniques for molecular sequencing; and concerns about the efficacy of the in vitro inoculum; have cast doubt on some past understanding of leucaena toxicity and provide new insights into the geographical spread of <em>S. jonesii</em>. There is also confusion and ignorance regarding the occurrence and significance of toxicity in many countries worldwide. Ongoing research into the taxonomy and ecology of the <em>Synergistetes </em>phylum, improved methods of inoculation, and improved management solutions, along with aware-ness-raising extension activities, are vital for the future success of leucaena feeding systems
    corecore