179 research outputs found

    Role of Herpes Simplex Type I Glycoproteins in Entry and Cell-cell Fusion

    Get PDF
    Herpes simplex virus type I (HSV-1) is a neurotropic virus that infects primarily mucocutaneous epithelial cells and nervous tissue. Membrane fusion is an important aspect of the HSV-1 lifecycle, that occurs during viral entry (virus-cell fusion), viral spread (cell-to-cell fusion), as well as, during virion morphogenesis (assembly and egress). These membrane fusion steps involve complex interactions between multiple viral glycoproteins and cellular receptors. HSV-1 glycoprotein B (gB) is necessary but not sufficient for membrane fusion events. Despite the fact, that the majority of known hypermorphic mutations which cause extensive virus-induced cell fusion occur within glycoprotein K (gK); yet the role of gK in gB-mediated cell fusion is not well-understood. We found that a mutation within the carboxyl terminal of gB that resulted in extensive cell fusion is lost in presence of a mutation in gK amino terminus(deletion of amino acids 31-68). These results suggest that gK may regulate gB mediated virus-induced cell fusion. Co-immunoprecipitation experiments revealed, that a peptide specifying the amino terminus of gK physically interacted with others members of the fusion complex i.e. gB, gH but not gD. Moreover, UL20p, known to interact with gK, interacted with gB as revealed by immunoprecipitatin reaction. Virus entry was also modulated by gK, since gK mutants lacking the entire gK gene or a deletion in the amino terminus (amino acids 31-68) failed to enter Chinese hamster ovary cells (CHO) expressing the gB receptor paired immunoglobulin-like type 2 receptor alpha (PILRα). While these gK mutants efficiently entered into CHO cells expressing the gD specific receptors, nectin-1 and HVEM. Co-immunoprecipitation experiments revealed that PILRα formed a multi-protein complex with gB and gK. Thus gK functions in entry in presence of gB specific receptors but not gD specific receptors. Overall, results obtained in this study, show that gK and UL20 are part of the fusion complex (gB,gD,gH/gL) that functions during virus entry and cell spread, and regulates interactions of gB with gB-specific cellular receptors

    The herpes simplex virus type 1 UL20 protein and the amino terminus of Glycoprotein K (gK) physically interact with gB

    Get PDF
    Herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) and the UL20 protein (UL20p) are strictly required for virus-induced cell fusion, and mutations within either the gK or UL20 gene cause extensive cell fusion (syncytium formation). We have shown that gK forms a functional protein complex with UL20p, which is required for all gK and UL20p-associated functions in the HSV-1 life cycle. Recently, we showed that the amino-terminal 82 amino acids (aa) of gK (gKa) were required for the expression of the syncytial phenotype of the mutant virus gBΔ28 lacking the carboxyl-terminal 28 amino acids of gB (V. N. Chouljenko, A. V. Iyer, S. Chowdhury, D. V. Chouljenko, and K. G. Kousoulas, J. Virol. 83:12301-12313, 2009). This work suggested that the amino terminus of gK may directly or indirectly interact with gB and/or other viral glycoproteins. Two-way coimmunoprecipitation experiments revealed that UL20p interacted with gB in infected cells. Furthermore, the gKa peptide was coimmunoprecipitated with gB but not gD. Three recombinant baculoviruses were constructed, expressing the amino-terminal 82 aa of gKa together with either the extracellular portion of gB (30 to 748 aa), gD (1 to 340 aa), or gH (1 to 792 aa), respectively. Coimmunoprecipitation experiments revealed that gKa physically interacted with the extracellular portions of gB and gH but not gD. Three additional recombinant baculoviruses expressing gKa and truncated gBs encompassing aa 30 to 154, 30 to 364, and 30 to 500 were constructed. Coimmunoprecipitation experiments showed that gKa physically interacted with all three truncated gBs. Computer-assisted prediction of possible gKa binding sites on gB suggested that gKa may interact predominantly with gB domain I (E. E. Heldwein, H. Lou, F. C. Bender, G. H. Cohen, R. J. Eisenberg, and S. C. Harrison, Science 313:217-220, 2006). These results imply that the gK/UL20p protein complex modulates the fusogenic properties of gB and gH via direct physical interactions. Copyright © 2010, American Society for Microbiology. All Rights Reserved

    Prevalence and risk factors of infection with high risk human papilloma viruses among hiv-positive women with clinical manifestations of tuberculosis in a middle-income country

    Get PDF
    Funding Information: RFBR 17-54-30002; R01 CA217715/CA/NCI NIH HHS/United States. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Women living with HIV-1 are at high risk of infection with human papillomavirus of high carcinogenic risk (HR HPVs). M. tuberculosis (TB) promotes HPV infection and increases the risk to develop HPV-associated cancer. Our knowledge of persisting HR HPVs genotypes, and of the factors promoting HR HPV infection in people living with HIV-1 with clinical TB manifestations is sparse. Here, we analyzed 58 women living with HIV-1 with clinical TB manifestations (WLWH with TB) followed up in specialized centers in Russia, a middle income country endemic for HIV-1 and TB, for the presence in cervical smears of DNA of twelve HR HPV genotypes. DNA encoding HPV16 E5, E6/E7 was sequenced. Sociodemographic data of patients was collected by questionnaire. All women were at C2-C3 stages of HIV-infection (by CDC). The majority were over 30 years old, had secondary education, were unemployed, had sexual partners, experienced 2–3 pregnancies and at least one abortion, and were smokers. The most prevalent was HPV16 detected in the cervical smears of 38% of study participants. Altogether 34.5% of study participants were positive for HR HPV types other than HPV16; however, but none of these types was seen in more than 7% of tested samples. Altogether, 20.7% of study participants were positive for several HR HPV types. Infections with HPVs other than HPV16 were common among WLWH with generalized TB receiving combined ART/TB-therapy, and associated with their ability to work, indirectly reflecting both their health and lifestyle. The overall prevalence of HR HPVs was associated with sexual activity of women reflected by the number of pregnancies, and of HPV 16, with young age; none was associated to CD4+-counts, route of HIV-infection, duration of life with HIV, forms of TB-infection, or duration of ART, characterizing the immune status. Thus, WLWH with TB—especially young—were predisposed to infection with HPV16, advancing it as a basis for a therapeutic HPV vaccine. Phylogenetic analysis of HPV16 E5, E6/E7 DNA revealed no common ancestry; sequences were similar to those of the European and American HPV16 strains, indicating that HPV vaccine for WLWH could be the same as HPV16 vaccines developed for the general population. Sociodemographic and health correlates of HR HPV prevalence in WLWH deserve further analysis to develop criteria/recommendations for prophylactic catch-up and therapeutic HPV vaccination of this highly susceptible and vulnerable population group.publishersversionPeer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    The amino terminus of herpes simplex virus 1 glycoprotein K is required for virion entry via the paired immunoglobulin-like type-2 receptor alpha

    No full text
    The herpes simplex virus 1 (HSV-1) glycoprotein K (gK)/UL20 protein complex is incorporated into virion envelopes and cellular membranes and functions during virus entry and cell-to-cell spread. To investigate the role of gK/UL20 in the context of a highly neurovirulent virus strain, the HSV-1(McKrae) genome was cloned into a bacterial artificial chromosome plasmid (McKbac) and utilized to construct the mutant virus McK(gKδ31-68), carrying a 37-amino-acid deletion within the gK amino terminus. The McKbac virus entered efficiently into Chinese hamster ovary (CHO) cells constitutively expressing HSV-1 human receptors, nectin-1, herpesvirus entry mediator (HVEM), or paired immunoglobulin-like type-2 receptor alpha (PILRα). In contrast, the McK(gKδ31-68) virus failed to enter into CHO-PILRα cells, while it entered CHO cells expressing HVEM and nectin-1 more efficiently than the McKbac virus. Both McKbac and McK(gKδ31-68) viruses entered all CHO cells expressing HSV-1 receptors via a pH-independent pathway. The HSV-1(F) gBδ28syn mutant virus, encoding a carboxyl-terminal truncated gB, causes extensive cell fusion. Previously, we showed that the gKδ31-68 amino acid deletion abrogated gBδ28syn virus-induced cell fusion, indicating that the amino terminus of gK is required for gB-mediated virus-induced cell fusion (V. N. Chouljenko, A. V. Iyer, S. Chowdhury, D. V. Chouljenko, and K. G. J. Kousoulas, Virology 83:12301-12313, 2009). Surprisingly, the gKδ31-68/gBδ28syn virus caused extensive fusion of CHO-nectin-1 cells but limited cell fusion of CHO-PILRα cells. Coimmunoprecipitation experiments revealed that both gK and PILRα bound gB in infected cells. Collectively, these results indicate that the amino terminus of gK is functionally and physically associated with the gB-PILRα protein complex and regulates membrane fusion of the viral envelope with cellular membranes during virus entry as well as virus-induced cell-to-cell fusion. © 2013, American Society for Microbiology

    Amino acid differences in glycoproteins B (gB), C (gC), H (gH) and L(gL) are associated with enhanced herpes simplex virus type-1 (McKrae) entry via the paired immunoglobulin-like type-2 receptor α

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Herpes simplex virus type-1 (HSV-1) enters into cells via membrane fusion of the viral envelope with plasma or endosomal membranes mediated by viral glycoproteins. HSV-1 virions attach to cell surfaces by binding of viral glycoproteins gC, gD and gB to specific cellular receptors. Here we show that the human ocular and highly neurovirulent HSV-1 strain McKrae enters substantially more efficiently into cells via the gB-specific human paired immunoglobulin-like type-2 receptor-α (hPILR-α). Comparison of the predicted amino acid sequences between HSV-1(F) and McKrae strains indicates that amino acid changes within gB, gC, gH and gL may cause increased entry via the hPILR- α receptor.</p> <p>Results</p> <p>HSV-1 (McKrae) entered substantially more efficiently than viral strain F in Chinese hamster ovary (CHO) cells expressing hPIRL-α but not within CHO-human nectin-1, -(CHO-hNectin-1), CHO-human HVEM (CHO-hHVEM) or Vero cells. The McKrae genes encoding viral glycoproteins gB, gC, gD, gH, gL, gK and the membrane protein UL20 were sequenced and their predicted amino acid (aa) sequences were compared with virulent strains F, H129, and the attenuated laboratory strain KOS. Most aa differences between McKrae and F were located at their gB amino termini known to bind with the PILRα receptor. These aa changes included a C10R change, also seen in the neurovirulent strain ANG, as well as redistribution and increase of proline residues. Comparison of gC aa sequences revealed multiple aa changes including an L132P change within the 129-247 aa region known to bind to heparan sulfate (HS) receptors. Two aa changes were located within the H1 domain of gH that binds gL. Multiple aa changes were located within the McKrae gL sequence, which were preserved in the H129 isolate, but differed for the F strain. Viral glycoproteins gD and gK and the membrane protein UL20 were conserved between McKrae and F strains.</p> <p>Conclusions</p> <p>The results indicate that the observed entry phenotype of the McKrae strain is most likely due to a combination of increased binding to heparan sulfate receptors and enhanced virus entry via gB-mediated fusion of the viral envelope with plasma membranes.</p

    The Amino Terminus of Herpes Simplex Virus Type 1 Glycoprotein K (gK) Modulates gB-Mediated Virus-Induced Cell Fusion and Virion Egress▿

    Get PDF
    Herpes simplex virus type 1 (HSV-1)-induced cell fusion is mediated by viral glycoproteins and other membrane proteins expressed on infected cell surfaces. Certain mutations in the carboxyl terminus of HSV-1 glycoprotein B (gB) and in the amino terminus of gK cause extensive virus-induced cell fusion. Although gB is known to be a fusogenic glycoprotein, the mechanism by which gK is involved in virus-induced cell fusion remains elusive. To delineate the amino-terminal domains of gK involved in virus-induced cell fusion, the recombinant viruses gKΔ31-47, gKΔ31-68, and gKΔ31-117, expressing gK carrying in-frame deletions spanning the amino terminus of gK immediately after the gK signal sequence (amino acids [aa] 1 to 30), were constructed. Mutant viruses gKΔ31-47 and gKΔ31-117 exhibited a gK-null (ΔgK) phenotype characterized by the formation of very small viral plaques and up to a 2-log reduction in the production of infectious virus in comparison to that for the parental HSV-1(F) wild-type virus. The gKΔ31-68 mutant virus formed substantially larger plaques and produced 1-log-higher titers than the gKΔ31-47 and gKΔ31-117 mutant virions at low multiplicities of infection. Deletion of 28 aa from the carboxyl terminus of gB (gBΔ28syn) caused extensive virus-induced cell fusion. However, the gBΔ28syn mutation was unable to cause virus-induced cell fusion in the presence of the gKΔ31-68 mutation. Transient expression of a peptide composed of the amino-terminal 82 aa of gK (gKa) produced a glycosylated peptide that was efficiently expressed on cell surfaces only after infection with the HSV-1(F), gKΔ31-68, ΔgK, or UL20-null virus. The gKa peptide complemented the gKΔ31-47 and gKΔ31-68 mutant viruses for infectious-virus production and for gKΔ31-68/gBΔ28syn-mediated cell fusion. These data show that the amino terminus of gK modulates gB-mediated virus-induced cell fusion and virion egress
    corecore