309 research outputs found

    Effects of Angiopoietin-2-Blocking Antibody on Endothelial Cell–Cell Junctions and Lung Metastasis

    Get PDF
    Background: Angiopoietin-2 (Ang2), a ligand for endothelial TEK (Tie2) tyrosine kinase receptor, is induced in hypoxic endothelial cells of tumors, where it promotes tumor angiogenesis and growth. However, the effects of Ang2 on tumor lymphangiogenesis and metastasis are poorly characterized. Methods: We addressed the effect of Ang2 on tumor progression and metastasis using systemic Ang2 overexpression in mice carrying tumor xenografts, endothelium-specific overexpression of Ang2 in VEC-tTA/Tet-OS-Ang2 transgenic mice implanted with isogenic tumors, and administration of Ang2-blocking antibodies to tumor-bearing immunodeficient mice. Fisher's exact test was used for analysis of metastasis occurrence, and repeated measures one-way analysis of variance was used for the analysis of primary tumor growth curves. Unpaired t test was used for all other analyses. All statistical tests were two-sided. Results: Adenoviral expression of Ang2 increased lymph node and lung metastasis in tumor xenografts. The metastatic burden in the lungs was increased in transgenic mice in which Ang2 expression was induced specifically in the vascular endothelium (tumor burden per grid, VEC-tTA/Tet-OS-Ang2 mice [n = 5] vs control mice [n = 4]: 45.23 vs 12.26 mm[superscript 2], difference = 32.67 mm[superscript 2], 95% confidence interval = 31.87 to 34.07, P < .001). Ang2-blocking antibodies reduced lymph node and lung metastasis, as well as tumor lymphangiogenesis, and decreased tumor cell homing to the lungs after intravenous injection. In the lung metastases, Ang2 overexpression decreased endothelial integrity, whereas the Ang2-blocking antibodies improved endothelial cell–cell junctions and basement membrane contacts of metastasis-associated lung capillaries. At the cellular level, the Ang2-blocking antibodies induced the internalization of Ang2-Tie2 receptor complexes from endothelial cell–cell junctions in endothelial–tumor cell cocultures. Conclusion: Our results indicate that blocking Ang2 inhibits metastatic dissemination in part by enhancing the integrity of endothelial cell–cell junctions

    The effect of web advertising visual design on online purchase intention: An examination across gender

    Get PDF
    With web advertising growing to be a huge industry, it is important to understand the effectiveness of web advertisement. In this study we investigate the effects of web advertising visual design (WAVD) purchasing intention within the framework of an integrated model. Nine hypotheses were developed and tested on a dataset of 316 observations collected via a questionnaire survey. The results of structural equation modeling (SEM) indicate that while web advertising visual cues influence consumers' purchasing intention through advertising attitudes and brand attitudes, they do not have direct effects on purchasing intention. Further results on the moderating role of gender suggest that web advertising visual cues have direct effect on consumers' purchasing intention for male groups but not for female groups. This study contributes to the understanding the role of visual dimensions in forming online purchase intentions

    Polysaccharides from the root of Angelica sinensis promotes hematopoiesis and thrombopoiesis through the PI3K/AKT pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dozens of Traditional Chinese Medicine (TCM) formulas have been used for promotion of "blood production" for centuries, and we are interested in developing novel thrombopoietic medicines from these TCMs. Our previous studies have demonstrated the hematopoietic effects of DangGui BuXue Tong (DBT), a formula composed of <it>Radix Angelicae Sinensis </it>and <it>Radix Astragali </it>in animal and cellular models. As a step further to identify and characterize the active chemical components of DBT, we tested the hematopoietic and particularly, thrombopoietic effects of polysaccharide-enriched fractions from the root of <it>Radix Angelicae Sinensis </it>(APS) in this study.</p> <p>Methods</p> <p>A myelosuppression mouse model was treated with APS (10 mg/kg/day). Peripheral blood cells from APS, thrombopoietin and vehicle-treated samples were then counted at different time-points. Using the colony-forming unit (CFU) assays, we determined the effects of APS on the proliferation and differentiation of hematopoietic stem/progenitor cells and megakaryocytic lineages. Using a megakaryocytic cell line M-07e as model, we analyzed the cellular apoptosis progression with and without APS treatment by Annexin V, Mitochondrial Membrane Potential and Caspase 3 assays. Last, the anti-apoptotic effect of APS on cells treated with Ly294002, a Phosphatidylinositol 3-Kinse inhibitor (PI3K) was also tested.</p> <p>Results</p> <p>In animal models, APS significantly enhanced not only the recovery of platelets, other blood cells and their progenitor cells, but also the formation of Colony Forming Unit (CFU). In M-07e cells, we observed the anti-apoptotic effect of APS. Treatment by Ly294002 alone increased the percentage of cells undergoing apoptosis. However, addition of APS to Ly294002-treated cells significantly reduced the percentage of cells undergoing apoptosis.</p> <p>Conclusions</p> <p>APS promotes hematopoiesis and thrombopoiesis in the mouse model. This effect likely resulted from the anti-apoptosis activity of APS and is likely to involve the PI3K/AKT pathway.</p

    Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels

    Get PDF
    Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets

    Isolation and Characterization of Novel Murine Epiphysis Derived Mesenchymal Stem Cells

    Get PDF
    BACKGROUND: While bone marrow (BM) is a rich source of mesenchymal stem cells (MSCs), previous studies have shown that MSCs derived from mouse BM (BMMSCs) were difficult to manipulate as compared to MSCs derived from other species. The objective of this study was to find an alternative murine MSCs source that could provide sufficient MSCs. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we described a novel type of MSCs that migrates directly from the mouse epiphysis in culture. Epiphysis-derived MSCs (EMSCs) could be extensively expanded in plastic adherent culture, and they had a greater ability for clonogenic formation and cell proliferation than BMMSCs. Under specific induction conditions, EMSCs demonstrated multipotency through their ability to differentiate into adipocytes, osteocytes and chondrocytes. Immunophenotypic analysis demonstrated that EMSCs were positive for CD29, CD44, CD73, CD105, CD166, Sca-1 and SSEA-4, while negative for CD11b, CD31, CD34 and CD45. Notably, EMSCs did not express major histocompatibility complex class I (MHC I) or MHC II under our culture system. EMSCs also successfully suppressed the proliferation of splenocytes triggered by concanavalin A (Con A) or allogeneic splenocytes, and decreased the expression of IL-1, IL-6 and TNF-α in Con A-stimulated splenocytes suggesting their anti-inflammatory properties. Moreover, EMSCs enhanced fracture repair, ameliorated necrosis in ischemic skin flap, and improved blood perfusion in hindlimb ischemia in the in vivo experiments. CONCLUSIONS/SIGNIFICANCES: These results indicate that EMSCs, a new type of MSCs established by our simple isolation method, are a preferable alternative for mice MSCs due to their better growth and differentiation potentialities

    Zebrafish as a model for kidney function and disease

    Get PDF
    Kidney disease is a global problem with around three million people diagnosed in the UK alone and the incidence is rising. Research is critical to develop better treatments. Animal models can help to better understand the pathophysiology behind the various kidney diseases and to screen for therapeutic compounds, but the use especially of mammalian models should be minimised in the interest of animal welfare. Zebrafish are increasingly used, as they are genetically tractable and have a basic renal anatomy comparable to mammalian kidneys with glomerular filtration and tubular filtration processing. Here, we discuss how zebrafish have advanced the study of nephrology and the mechanisms underlying kidney disease

    CHIMPS2: Survey description and <sup>12</sup>CO emission in the Galactic Centre

    Get PDF
    Abstract The latest generation of Galactic-plane surveys is enhancing our ability to study the effects of galactic environment upon the process of star formation. We present the first data from CO Heterodyne Inner Milky Way Plane Survey 2 (CHIMPS2). CHIMPS2 is a survey that will observe the Inner Galaxy, the Central Molecular Zone (CMZ), and a section of the Outer Galaxy in 12CO, 13CO, and C18O (J = 3 → 2) emission with the Heterodyne Array Receiver Program on the James Clerk Maxwell Telescope (JCMT). The first CHIMPS2 data presented here are a first look towards the CMZ in 12CO J = 3→2 and cover −3○ ≤ ℓ ≤ 5○ and ∣b{b}∣ ≤ 0.{_{.}^{\circ}}5 with angular resolution of 15 arcsec, velocity resolution of 1 km s−1, and rms ΔTA=\Delta \, T_A ^\ast = 0.58 K at these resolutions. Such high-resolution observations of the CMZ will be a valuable data set for future studies, whilst complementing the existing Galactic Plane surveys, such as SEDIGISM, the Herschel{Herschel} infrared Galactic Plane Survey, and ATLASGAL. In this paper, we discuss the survey plan, the current observations and data, as well as presenting position-position maps of the region. The position-velocity maps detect foreground spiral arms in both absorption and emission

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
    corecore