1,710 research outputs found

    Modification of Structure and Strength Properties of Permanent Joints Under Laser Beam Welding with Application of Nanopowder Modifiers

    Get PDF
    In the paper we present the results of experimental study of specially prepared nanosize metal-ceramic compositions impact upon structure, microhardness and mechanical properties of permanent joints produced by laser-beam welding of steel and titanium alloy plates

    Structure and properties of the layered perovskites in Sm-Ba-Co-Fe-O System

    Get PDF
    Perovskite oxide materials with the general formula of ABO3, where A is an alkali earth or rare earth metals and B is transition metals, have attracted much attention as cathodes for solid oxide fuel cells because of their high electronic conductivity and fast mobility of oxygen ions. The introduction of Ba2+ and Ln3+ ions with significantly different radii into the A-sites leads to a formation of layered perovskite-type structures which have formed due to the cations’ ordering in the alternating layers. Depending on the nature of rare earth and 3d metal, it was possible to obtain double LnBaM2O6-δ, triple LnBa2M3O9-δ, or quintuple Ln2Ba3M5O15-δ perovskites. The aim of the present work was studying the effect of Ln/Ba and Fe/Co ratio for the crystal and defect structure and properties of oxides in the Sm-Ba-Co-Fe-O system. Polycrystalline samples of SmBaCo2−xFexO6-δ and Sm2-εBa3+εFe5-yCoyO15-δ were prepared by the glycine–nitrate synthesis. Final annealing was performed at 1100°С in air during 120h with intermediate grindings, followed by slow cooling down to room temperature at a rate of about 100°/h. The structural parameters were refined by the Rietveld method using the Fullprof-2008 software. Transmission electron microscopy studies were performed using FEI Tecnai G2 30 UT microscope operated at 300kV. The changes of oxygen content in complex oxides were measured by coulometric titration method as a function of temperature and oxygen partial pressure. The absolute value of oxygen content in the samples was determined using a direct reduction in the TG cell by hydrogen flow and red-ox titration. Thermal expansion of samples was studied using Netzsch DIL 402C dilatometer within the temperature range 25 – 1100°С in air. Total conductivity and Seebeck coefficient were measured simultaneously using a 4-probe technique. The crystal structure of SmBaCo2−xFexO6-δ (0≤x≤0.5) was described by the orthorhombic ap×2ap×2ap cell (Pmmm sp. gr.), while SmBaCo2−xFexO6-δ (0.6≤x≤1.1) crystallized in the tetragonal structure, ap×ap×2ap cell (P4/mmm sp. gr.). The crystal structure of single-phase Sm2-εBa3+εFe5-yCoyO15-δ (ε = 0, y = 0.5–1.5; ε = 0.125, y = 0) determined by XRD was described as cubic (sp. gr. Pm3m). However, transmission electronic microscopy revealed that oxides possess tetragonal structure with 5-fold c parameter. The defect structure of oxides with double perovskite structure was described using the model based on the simple cubic perovskite SmMeO3 (Me = Co, Fe) as a reference state. Equilibrium constants and enthalpies of the point defects formation were refined. The concentrations of all defect species were calculated as functions of temperature and oxygen nonstoichiometry. The temperature dependencies of total conductivity for SmBaCo2−xFexO6-δ and Sm2-εBa3+εFe5-yCoyO15-δ possess maxima at approximately 300–350ºC in air. The partial substitution of iron for cobalt leads to a decrease in the conductivity value. Seebeck coefficient for all compounds reveals positive values within the entire temperature and oxygen partial pressure ranges that indicate predominant p-type conductivity. The dependencies of electrical conductivity and Seebeck coefficient versus oxygen nonstoichiometry were discussed on the basis of the defect structure models. The values of activation energy for fixed oxygen content values were calculated. This work was supported by the Russian Science Foundation (Grant № 18-73-00159

    Parametric Generation of Second Sound by First Sound in Superfluid Helium

    Full text link
    We report the first experimental observation of parametric generation of second sound (SS) by first sound (FS) in superfluid helium in a narrow temperature range in the vicinity of TλT_\lambda . The temperature dependence of the threshold FS amplitude is found to be in a good quantitative agreement with the theory suggested long time ago and corrected for a finite geometry. Strong amplitude fluctuations and two types of the SS spectra are observed above the bifurcation. The latter effect is quantitatively explained by the discreteness of the wave vector space and the strong temperature dependence of the SS dissipation length.Comment: 4 pages, 4 postscript figures, REVTE

    On Nanomodification of Coating Obtained by Laser Cladding of Composite Powder 12NVK-01

    Get PDF
    The results of an experimental study of the effect of nanomodifying additives on the structure and mechanical properties of a multilayer coating during laser surfacing of a composite powder with a strengthening phase are presented. As a surfacing material, nickel powder 12NVK -01 with a strengthening phase of tungsten carbide was used, and as a modifying additive was a mixture of nanosized refractory powders of titanium nitride and yttrium oxide clad with iron and chromium. It is established that the deposited coating represents a complex system of phases formed during the melting and interaction of the chemical elements of the substrate and the melted powder mixture. The main component of the coating is the combination of nickel with iron and chromium of the type Ni3(Fe,Cr). In the melting process, a partial decomposition of the strengthening phase occurs, depending on the concentration of the nanomodifier. In the case considered, the optimum amount of the modifying additive providing the maximum hardness and wear resistance increase of the composite coatings of the Ni-Cr-B-Si-Fe / WC system is 0.1% by mass of the refractory TiN+Y[2]O[3] nanopowder additive in the composite material

    On Nanomodification of Coating Obtained by Laser Cladding of Composite Powder 12NVK-01

    Get PDF
    The results of an experimental study of the effect of nanomodifying additives on the structure and mechanical properties of a multilayer coating during laser surfacing of a composite powder with a strengthening phase are presented. As a surfacing material, nickel powder 12NVK -01 with a strengthening phase of tungsten carbide was used, and as a modifying additive was a mixture of nanosized refractory powders of titanium nitride and yttrium oxide clad with iron and chromium. It is established that the deposited coating represents a complex system of phases formed during the melting and interaction of the chemical elements of the substrate and the melted powder mixture. The main component of the coating is the combination of nickel with iron and chromium of the type Ni3(Fe,Cr). In the melting process, a partial decomposition of the strengthening phase occurs, depending on the concentration of the nanomodifier. In the case considered, the optimum amount of the modifying additive providing the maximum hardness and wear resistance increase of the composite coatings of the Ni-Cr-B-Si-Fe / WC system is 0.1% by mass of the refractory TiN+Y[2]O[3] nanopowder additive in the composite material

    Alignment of the CMS tracker with LHC and cosmic ray data

    Get PDF
    © CERN 2014 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10μm

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore