402 research outputs found

    Caenorhabditis elegans as a model system to identify therapeutics for alcohol use disorders

    Get PDF
    Alcohol use disorders (AUDs) cause serious problems in society and few effective treatments are available. Caenorhabditis elegans (C. elegans) is an excellent invertebrate model to study the neurobiological basis of human behavior with a conserved, fully tractable genome, and a short generation time for fast generation of data at a fraction of the cost of other organisms. C. elegans demonstrate movement toward, and concentration-dependent self-exposure to various psychoactive drugs. The discovery of opioid receptors in C. elegans provided the impetus to test the hypothesis that C. elegans may be used as a medications screen to identify new AUD treatments. We tested the effects of naltrexone, an opioid antagonist and effective treatment for AUDs, on EtOH preference in C. elegans. Six-well agar test plates were prepared with EtOH placed in a target zone on one side and water in the opposite target zone of each well. Worms were treated with naltrexone before EtOH preference testing and then placed in the center of each well. Wild-type worms exhibited a concentration-dependent preference for 50, 70 and 95% EtOH. Naltrexone blocked acute EtOH preference, but had no effect on attraction to food or benzaldehyde in wild-type worms. Npr-17 opioid receptor knockout mutants did not display a preference for EtOH. In contrast, npr-17 opioid receptor rescue mutants exhibited significant EtOH preference behavior, which was attenuated by naltrexone. Chronic EtOH exposure induced treatment resistance and compulsive-like behavior. These data indicate that C. elegans can serve as a model system to identify compounds to treat AUDs

    REST is a hypoxia-responsive transcriptional repressor

    Get PDF
    Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    The differential effects of ecstasy/polydrug use on executive components: shifting, inhibition, updating and access to semantic memory

    Get PDF
    Rationale/Objectives Recent theoretical models suggest that the central executive may not be a unified structure. The present study explored the nature of central executive deficits in ecstasy users. Methods In study 1, 27 ecstasy users and 34 non-users were assessed using tasks to tap memory updating (computation span; letter updating) and access to long-term memory (a semantic fluency test and the Chicago Word Fluency Test). In study 2, 51 ecstasy users and 42 non-users completed tasks that assess mental set switching (number/letter and plus/minus) and inhibition (random letter generation). Results MANOVA revealed that ecstasy users performed worse on both tasks used to assess memory updating and on tasks to assess access to long-term memory (C- and S-letter fluency). However, notwithstanding the significant ecstasy group-related effects, indices of cocaine and cannabis use were also significantly correlated with most of the executive measures. Unexpectedly, in study 2, ecstasy users performed significantly better on the inhibition task, producing more letters than non-users. No group differences were observed on the switching tasks. Correlations between indices of ecstasy use and number of letters produced were significant. Conclusions The present study provides further support for ecstasy/polydrug-related deficits in memory updating and in access to long-term memory. The surplus evident on the inhibition task should be treated with some caution, as this was limited to a single measure and has not been supported by our previous work

    Haplotype Analysis Improved Evidence for Candidate Genes for Intramuscular Fat Percentage from a Genome Wide Association Study of Cattle

    Get PDF
    In genome wide association studies (GWAS), haplotype analyses of SNP data are neglected in favour of single point analysis of associations. In a recent GWAS, we found that none of the known candidate genes for intramuscular fat (IMF) had been identified. In this study, data from the GWAS for these candidate genes were re-analysed as haplotypes. First, we confirmed that the methodology would find evidence for association between haplotypes in candidate genes of the calpain-calpastatin complex and musculus longissimus lumborum peak force (LLPF), because these genes had been confirmed through single point analysis in the GWAS. Then, for intramuscular fat percent (IMF), we found significant partial haplotype substitution effects for the genes ADIPOQ and CXCR4, as well as suggestive associations to the genes CEBPA, FASN, and CAPN1. Haplotypes for these genes explained 80% more of the phenotypic variance compared to the best single SNP. For some genes the analyses suggested that there was more than one causative mutation in some genes, or confirmed that some causative mutations are limited to particular subgroups of a species. Fitting the SNPs and their interactions simultaneously explained a similar amount of the phenotypic variance compared to haplotype analyses. Haplotype analysis is a neglected part of the suite of tools used to analyse GWAS data, would be a useful method to extract more information from these data sets, and may contribute to reducing the missing heritability problem

    More Than 1,001 Problems with Protein Domain Databases: Transmembrane Regions, Signal Peptides and the Issue of Sequence Homology

    Get PDF
    Large-scale genome sequencing gained general importance for life science because functional annotation of otherwise experimentally uncharacterized sequences is made possible by the theory of biomolecular sequence homology. Historically, the paradigm of similarity of protein sequences implying common structure, function and ancestry was generalized based on studies of globular domains. Having the same fold imposes strict conditions over the packing in the hydrophobic core requiring similarity of hydrophobic patterns. The implications of sequence similarity among non-globular protein segments have not been studied to the same extent; nevertheless, homology considerations are silently extended for them. This appears especially detrimental in the case of transmembrane helices (TMs) and signal peptides (SPs) where sequence similarity is necessarily a consequence of physical requirements rather than common ancestry. Thus, matching of SPs/TMs creates the illusion of matching hydrophobic cores. Therefore, inclusion of SPs/TMs into domain models can give rise to wrong annotations. More than 1001 domains among the 10,340 models of Pfam release 23 and 18 domains of SMART version 6 (out of 809) contain SP/TM regions. As expected, fragment-mode HMM searches generate promiscuous hits limited to solely the SP/TM part among clearly unrelated proteins. More worryingly, we show explicit examples that the scores of clearly false-positive hits, even in global-mode searches, can be elevated into the significance range just by matching the hydrophobic runs. In the PIR iProClass database v3.74 using conservative criteria, we find that at least between 2.1% and 13.6% of its annotated Pfam hits appear unjustified for a set of validated domain models. Thus, false-positive domain hits enforced by SP/TM regions can lead to dramatic annotation errors where the hit has nothing in common with the problematic domain model except the SP/TM region itself. We suggest a workflow of flagging problematic hits arising from SP/TM-containing models for critical reconsideration by annotation users

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore