62 research outputs found

    Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Get PDF
    Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7) are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network

    Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans is the leading cause of death by fungal meningoencephalitis; however, treatment options remain limited. Here we report the construction of 264 signature-tagged gene-deletion strains for 129 putative kinases, and examine their phenotypic traits under 30 distinct in vitro growth conditions and in two different hosts (insect larvae and mice). Clustering analysis of in vitro phenotypic traits indicates that several of these kinases have roles in known signalling pathways, and identifies hitherto uncharacterized signalling cascades. Virulence assays in the insect and mouse models provide evidence of pathogenicity-related roles for 63 kinases involved in the following biological categories: growth and cell cycle, nutrient metabolism, stress response and adaptation, cell signalling, cell polarity and morphology, vacuole trafficking, transfer RNA (tRNA) modification and other functions. Our study provides insights into the pathobiological signalling circuitry of C. neoformans and identifies potential anticryptococcal or antifungal drug targets.OAIID:RECH_ACHV_DSTSH_NO:T201615370RECH_ACHV_FG:RR00200001ADJUST_YN:EMP_ID:A003535CITE_RATE:11.329FILENAME:4. ncomms12766.pdfDEPT_NM:농생ëȘ…êł”학부EMAIL:[email protected]_YN:YFILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/fce63c4a-7de7-4741-996f-d8d24af38905/linkCONFIRM:

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≄1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≀6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Studies of beauty baryon decays to D0ph− and Λ+ch− final states

    Get PDF

    Molecular complexity of sexual development and gene regulation in Plasmodium falciparum

    No full text
    The malaria parasite, Plasmodium falciparum, has a complex life cycle which alternates between the vertebrate host and the invertebrate vector. Various morphological changes as well as stage-specific transcripts and gene expression profiles that accompany parasite\u27s asexual and sexual life cycle suggest that gene regulation is crucial for the parasite\u27s continual adaptations to survive the changing environments as well as for pathogenesis. Development of sexual stages is crucial for malaria transmission and relatively little is known about the role of specific gene products during asexual to sexual differentiation and further development. Therefore, in order to have a full understanding of the biology of the malaria parasite, gene regulation on a genome-wide global level must be understood, an area remaining to be elucidated in P. falciparum. Parasite features, such as A-T bias, difficulties in cloning, labor-intensive culture and purification of specific stages of the parasite, all contribute to the difficulties to investigate many aspects of parasite biology. However, despite these challenges, limited studies have revealed a number of parallelisms with eukaryotic transcription. For example, the parasite\u27s genes are organised in a similar fashion, contain promoter elements and upstream activation sequences, as shown by structural searches and functional assays, and some of the basal machinery and general transcription factors have been found in Plasmodium. The completion of the full genome sequence of P. falciparum and other species of Plasmodium has resulted in the search for specific transcription factors through genome mining. Although genome mining may identify some of the factors, search for these factors solely by primary sequence homology would result in a non-comprehensive list for transcription factors present in the genome. Here, we present further discussion on putative transcription factors like activities detected in the asexual and sexual stages of P. falciparum. © 2004 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved

    Interlamellar CA1 network in the hippocampus

    No full text
    To understand the cellular basis of learning and memory, the neurophysiology of the hippocampus has been largely examined in thin transverse slice preparations. However, the synaptic architecture along the longitudinal septo-temporal axis perpendicular to the transverse projections in CA1 is largely unknown, despite its potential significance for understanding the information processing carried out by the hippocampus. Here, using a battery of powerful techniques, including 3D digital holography and focal glutamate uncaging, voltage-sensitive dye, two-photon imaging, electrophysiology, and immunohistochemistry, we show that CA1 pyramidal neurons are connected to one another in an associational and well-organized fashion along the longitudinal axis of the hippocampus. Such CA1 longitudinal connections mediate reliable signal transfer among the pyramidal cells and express significant synaptic plasticity. These results illustrate a need to reconceptualize hippocampal CA1 network function to include not only processing in the transverse plane, but also operations made possible by the longitudinal network. Our data will thus provide an essential basis for future computational modeling studies on information processing operations carried out in the full 3D hippocampal network that underlies its complex cognitive functions

    Nifedipine plus candesartan combination increases blood pressure control regardless of race and improves the side effect profile: DISTINCT randomized trial results.

    No full text
    OBJECTIVES:DISTINCT (reDefining Intervention with Studies Testing Innovative Nifedipine GITS - Candesartan Therapy) aimed to determine the dose-response and tolerability of nifedipine GITS and/or candesartan cilexetil therapy in participants with hypertension. METHODS:In this 8-week, multinational, multicentre, randomized, double-blind, placebo-controlled study, adults with mean seated DBP of at least 95 to less than 110\u200ammHg received combination or monotherapy with nifedipine GITS (N) 20, 30 or 60\u200amg and candesartan cilexetil (C) 4, 8, 16 or 32\u200amg, or placebo. The primary endpoint, change in DBP from baseline to Week 8, was analysed using the response surface model (RSM); this analysis was repeated for mean seated SBP. RESULTS:Overall, 1381 participants (mean baseline SBP/DBP: 156.5/99.6\u200ammHg) were randomized. Both N and C contributed independently to SBP/DBP reductions [P\u200a&lt;\u200a0.0001 (RSM)]. A positive dose-response was observed, with all combinations providing statistically better blood pressure (BP) reductions from baseline versus respective monotherapies (P\u200a&lt;\u200a0.05) and N60C32 achieving the greatest reduction [-23.8/-16.5\u200ammHg; P\u200a&lt;\u200a0.01 versus placebo (-5.3/-6.7\u200ammHg) and component monotherapies]. Even very low-dose (N20 and C4) therapy provided significant BP-lowering, and combination therapy was similarly effective in different racial groups. N/C combination demonstrated a lower incidence of vasodilatory adverse events than N monotherapy (18.3 versus 23.6%), including headache (5.5 versus 11.0%; P\u200a=\u200a0.003, chi-square test) and peripheral oedema over time (3.6 versus 5.8%; n.s.). CONCLUSION: N/C combination was effective in participants with hypertension and showed an improved side effect profile compared with N monotherapy
    • 

    corecore