18 research outputs found

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Diffraction efficiency and signal-to-noise ratio of multiplexed volume phase holograms recorded in a photographic emulsion

    No full text
    The problems related to noise that arise during recording and reconstruction of holograms used in optical data storage or in massive optical interconnection systems are quite similar and can be analyzed in order to improve the quality of the images that these optical systems provide. In this paper, we will analyze noise in cases in which several coherent object waves are simultaneously stored in a phase recording material in a way that allows us to obtain information about the relationship that exists between the recording material and the number of waves that are being stored. The material used in this study is Agfa Gevaert 8E75 HD holographic film processed with a rehalogenating—type bleach bath without a fixation step. Additionally, we show experimentally that it is possible to holographically store more than 400 waves at the same time (in a coherent fashion) using the same storage geometry, with a signal-to-noise ratio larger than 20 and an average diffraction efficiency of 15%.Part of this work was supported by the Direcció General d'Ensenyaments Universitaris i Investigació of the Generalitat Valenciana, Spain (Project GV-1165/93) and the Comisión Interministerial de Ciencia y Tecnología, Spain (Project MAT93-0369)

    Size reduction of poplar wood using a lathe for biofuel manufacturing: effects of biomass crystallinity on sugar yield

    Get PDF
    Poplar wood can be used as a feedstock for manufacturing cellulosic biofuel (ethanol) as an alternative to petroleum-based liquid transportation fuel. Producing biofuel from poplar wood involves reducing poplar wood into small particles (known as size reduction), hydrolyzing cellulose inside poplar particles to fermentable sugars, and converting these sugars to ethanol biofuel. Size reduction is usually done by wood chipping and biomass milling. In the literature, there are inconsistent reports about effects of particle size and biomass crystallinity on sugar yield (proportional to ethanol yield). An important reason for this inconsistence is that effects of these two biomass structural features (particle size and biomass crystallinity) on sugar yield are confounded with current size reduction methods. In this study, a lathe was used to produce poplar wood particles with (statistically) the same particle size (thickness) but different levels of biomass crystallinity, making it possible to investigate effects of biomass crystallinity on sugar yield without being confounded with effects of particle size. Results from this study show that, for the three levels of biomass crystallinity tested, sugar yield increased as biomass crystallinity decreased

    Risk assessment and communication tools for genotype associations with multifactorial phenotypes: The concept of "edge effect" and cultivating an ethical bridge between omics innovations and society

    No full text
    Applications of omics technologies in the postgenomics era swiftly expanded from rare monogenic disorders to multifactorial common complex diseases, pharmacogenomics, and personalized medicine. Already, there are signposts indicative of further omics technology investment in nutritional sciences (nutrigenomics), environmental health/ecology (ecogenomics), and agriculture (agrigenomics). Genotype–phenotype association studies are a centerpiece of translational research in omics science. Yet scientific and ethical standards and ways to assess and communicate risk information obtained from association studies have been neglected to date. This is a significant gap because association studies decisively influence which genetic loci become genetic tests in the clinic or products in the genetic test marketplace. A growing challenge concerns the interpretation of large overlap typically observed in distribution of quantitative traits in a genetic association study with a polygenic/multifactorial phenotype. To remedy the shortage of risk assessment and communication tools for association studies, this paper presents the concept of edge effect. That is, the shift in population edges of a multifactorial quantitative phenotype is a more sensitive measure (than population averages) to gauge the population level impact and by extension, policy significance of an omics marker. Empirical application of the edge effect concept is illustrated using an original analysis of warfarin pharmacogenomics and the VKORC1 genetic variation in a Brazilian population sample. These edge effect analyses are examined in relation to regulatory guidance development for association studies. We explain that omics science transcends the conventional laboratory bench space and includes a highly heterogeneous cast of stakeholders in society who have a plurality of interests that are often in conflict. Hence, communication of risk information in diagnostic medicine also demands attention to processes involved in production of knowledge and human values embedded in scientific practice, for example, why, how, by whom, and to what ends association studies are conducted, and standards are developed (or not). To ensure sustainability of omics innovations and forecast their trajectory, we need interventions to bridge the gap between omics laboratory and society. Appreciation of scholarship in history of omics science is one remedy to responsibly learn from the past to ensure a sustainable future in omics fields, both emerging (nutrigenomics, ecogenomics), and those that are more established (pharmacogenomics). Another measure to build public trust and sustainability of omics fields could be legislative initiatives to create a multidisciplinary oversight body, at arm's length from conflict of interests, to carry out independent, impartial, and transparent innovation analyses and prospective technology assessment.Vural Ozdemir, Guilherme Suarez-Kurtz, Raphaëlle Stenne, Andrew A. Somogyi, Toshiyuki Someya, S. Oğuz Kayaalp, and Eugene Kolke
    corecore