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Abstract 

Poplar wood can be used as a feedstock for manufacturing cellulosic biofuel (ethanol) as an 

alternative to petroleum-based liquid transportation fuel. Producing biofuel from poplar wood 

involves reducing poplar wood into small particles (known as size reduction), hydrolyzing 

cellulose inside poplar particles to fermentable sugars, and converting these sugars to ethanol 

biofuel. Size reduction is usually done by wood chipping and biomass milling. In the literature, 

there are inconsistent reports about effects of particle size and biomass crystallinity on sugar 
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yield (proportional to ethanol yield). An important reason for this inconsistence is that effects of 

these two biomass structural features (particle size and biomass crystallinity) on sugar yield are 

confounded with current size reduction methods. In this study, a lathe was used to produce 

poplar wood particles with (statistically) the same particle size (thickness) but different levels of 

biomass crystallinity, making it possible to investigate effects of biomass crystallinity on sugar 

yield without being confounded with effects of particle size. Results from this study show that, 

for the three levels of biomass crystallinity tested, sugar yield increased as biomass crystallinity 

decreased.  

1 Introduction 

Liquid transportation fuels currently used in the U.S. are mainly petroleum based (EIA, 

2013a; EIA, 2013b; EIA, 2013c). In 2011, the U.S. transportation sector consumed about 18.95 

million barrels of petroleum per day, and 45% of them were imported (EIA, 2013d). The 

dependence on foreign petroleum threatens the nation’s energy security. Another issue of 

consuming petroleum-based transportation fuels is greenhouse gas (GHG) emissions. One-third 

of the total carbon dioxide emissions in the U.S. are from the use of petroleum-based 

transportation fuels (Greene et al. 2011).  

Biofuels are critical to addressing these issues. Biofuels have the potential to reduce GHG 

emissions by as much as 86% (Wang et al., 2008). Because biofuels are made from plant-based 

feedstocks, the carbon dioxide released during combustion is “recycled” by plants as they grow 

(RFA, 2013). In addition, Cellulosic biofuels are produced from cellulosic biomass, including 

agricultural and forestry residues and dedicated energy crops. Unlike other types of feedstocks 

(e.g. corn, sugar cane, and soybean) for biofuels, cellulosic biomass does not compete with food 

production for the limited agricultural land (Zhang et al., 2011; Gray et al., 2006).  
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Major processes of biofuel manufacturing from poplar wood are listed in Figure 1. First, size 

reduction reduces the particle size of poplar wood (Lynd, 1996; Zhu et al., 2009a; Zhu et al., 

2009b; Zhu et al., 2010). Pretreatment helps to make cellulose in the biomass more accessible to 

enzymes during hydrolysis. Hydrolysis depolymerizes cellulose into its component sugars 

(glucose). Afterwards, fermentation converts glucose into biofuel (ethanol) (Rubin, 2008; 

Houghton et al., 2006; von Sivers and Zacchi, 1996). 

Size reduction of poplar wood is necessary because large-size woody biomass cannot be 

converted to biofuels efficiently with current conversion technologies (Wyman et al., 2009). Size 

reduction of poplar wood usually involves two steps. The first step is wood chipping. Machines 

available for wood chipping include disk, drum, and V-drum chippers (Wyman et al., 2009). The 

second step is biomass milling to further reduce the wood chips into small wood particles. This 

step is usually conducted on hammer mills (Zhu et al., 2009a; Negro et al., 2003), knife mills 

(Wyman et al., 2009; Nutor and Converse, 1991; Sierra et al., 2009), compression mills (Zhu et 

al., 2009a), or ball mills (Chang and Holtzapple, 2000). 

Two important structural features of cellulosic biomass are biomass crystallinity and particle 

size (Zhu et al., 2008). Reported relationships between sugar yield and these two features are 

summarized in Table 1. It can be seen that reported relationships are inconsistent. Some 

researchers reported that lower biomass crystallinity produced higher sugar yield, while some 

other researchers did not support such a relationship. Inconsistent results are also reported for 

relationships between particle size and sugar yield as analyzed by Zhang et al. in their review 

paper (Zhang et al., 2013b). 

An important reason for this inconsistence is that, with current size reduction methods, 

effects of these two features on sugar yield are confounded. Current size reduction methods tend 
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to change particle size and biomass crystallinity simultaneously. With current size reduction 

methods, in order to produce smaller particles, longer milling time is usually needed. In general, 

longer milling time also decreases biomass crystallinity by generating more impact and 

deformation to disrupt the crystalline structure of cellulose in the biomass (Zhu et al., 2008).  

In this study, a metal-cutting machine (lathe) was used to produce poplar wood particles 

with (statistically) the same particle size (thickness) but different levels of biomass crystallinity. 

This effort made it possible to study effects of biomass crystallinity on sugar yield without being 

confounded with effects of particle size.  

2 Experimental set-up and measurement procedures 

2.1 Poplar wood material  

The poplar wood used in this study was purchased from a local lumber company (Griffith 

Lumber Co., Manhattan, KS, USA). The size of the poplar lumber boards was 156 mm × 156 

mm × 1,000 mm. As shown in Figure 2, poplar wood logs were cut from the lumber board using 

a hole saw (Milwaukee Electric Tool Co., Brookfield, WI, USA) with an inner diameter of 146 

mm, on a drilling machine. Then the poplar wood log was fixed on a lathe (Monarch Machine 

Tool Co., Sidney, OH, USA) using a three-jaw chuck. A center hole with the diameter of 38.26 

mm was drilled (using a twist drill mounted on the tailstock of the lathe) into the wood log to 

obtain the hollow cylinder workpiece. The inner surfaces of the hollow cylinders were machined 

by a boring tool to reduce the wall thickness (the distance between outer and inner radii of the 

hollow cylinder). The hollow cylinders were used for size reduction experiments. 

2.2 Experimental set-up and conditions 
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The experimental setup is shown in Figure 3. Size reduction experiments were conducted on 

a lathe (Monarch Machine Tool Co. Sidney, OH, USA). The cutting tool was custom made with 

AISI T8 high speed steel. The tool geometry is shown in Figure 4. The rake angle of the tool 

could be adjusted by rotating the tool holder (NKLNR-121B, Kennametal Inc., Latrobe, PA, 

USA) along its axial direction. Eight slots (with 1 mm wide for each slot) were cut into the 

workpiece using a hacksaw, dividing the hollow cylinder workpiece into eight equal parts, as 

illustrated in Figure 5. The continuous chip would break (into particles) at locations of these slots. 

When the lathe spindle rotated one revolution, eight particles with the same length were 

produced. The experimental conditions are listed in Table 2. No coolant was used. A large white 

paper board was placed on the lathe bed to collect poplar wood particles. After the particles were 

collected, they were kept in zip bags and stored in a refrigerator at 4°C before further use.  

2.3 Measurement of particle size 

In this study, particle size is represented by particle thickness (a0). It was measured using a 

caliper (IP-65, Mitutoyo Corp., Kawasaki, Japan), as shown in Figure 6. A typical particle was 

shown in Figure 7. Particles were curved when cut off from the wood cylinder workpiece, as 

shown in Figure 7(a). If they were manually flattened, they would look like the one shown in 

Figure 7(b). Thirty particles under each condition were randomly picked for measurement of 

particle thickness. 

2.4 Measurement of biomass crystallinity 

Cellulose in cellulose biomass consists of amorphous regions and crystalline regions, as 

illustrated in Figure 8. Biomass crystallinity is used to describe the percentage of crystalline 

regions of cellulose and expressed as crystallinity index (CI) (Sunkyu et al., 2010). A higher CI 
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means that cellulose in cellulose biomass has a higher percentage of crystalline regions. It has 

been suggested that amorphous regions of cellulose degrades more easily than crystalline regions 

(Puri, 1984; Fan and Beardmore, 1980). Therefore, a higher CI would result in lower enzyme 

accessibility, and, hence, lower sugar yield. CI was measured by an X-ray diffractometer 

(MiniFlex II, Rigaku Americas Corp., The Woodlands, TX, USA) and calculated using analysis 

software PDXL (Version 1.6.0.0, Rigaku Americas Corp., The Woodlands, TX, USA). For each 

test condition, three particles were randomly picked for CI measurement. For each measurement, 

one poplar particle was placed on the sample holder of the X-ray diffractometer.  

2.5 Measurement of sugar (glucose) yield  

Prior to sugar yield measurement, collected poplar particles were treated using dilute acid 

pretreatment. The pretreatment was carried out in the 600-ml reaction vessel of a Parr pressure 

reactor (4760A, Parr Instrument Co., Moline, IL, USA). Poplar particles were mixed with diluted 

sulfuric acid to obtain biomass slurry with 5% solid content (10 g of poplar particles in 200 mL 

of 2% diluted sulfuric acid). Pretreatment time was 30 min, and pretreatment temperature was 

140 °C. 

After pretreatment, biomass was washed three times with 300 mL of hot deionized water (85 

ºC) using a centrifuge (PR-7000M, International Equipment Co., Needham, MA, USA). The 

rotation speed of the centrifuge was 4,500 rpm. The purpose of biomass washing was to remove 

acid residues and inhibitors (substances that would bind to enzymes and decrease their activity to 

depolymerize cellulose to glucose) formed during pretreatment. 

Then, the pretreated biomass was processed by enzymatic hydrolysis, following the National 

Renewable Energy Laboratory (NREL) analytical procedure (Selig et al., 2008). Enzyme 

complex Accellerase 1500TM (Danisco US Inc., Rochester, NY, USA) was used in the sodium 
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acetate buffer solution (50 mM, pH 4.8) with 0.02% (w/v) sodium azide to prevent microbial 

growth during hydrolysis. Enzymatic hydrolysis was carried out in 125-mL flasks with 50 mL of 

slurry in a water bath shaker (C76, New Brunswick Scientific, Edison, NJ, USA) with the 

agitation speed of 110 rpm at 50 °C for 72 hours. The dry mass content of the hydrolysis slurries 

was 5% (w/v) and the enzyme loading was 1 mL/g of dry biomass. After 72 hours of enzymatic 

hydrolysis, the hydrolysis slurries were sampled by withdrawing 0.1 mL of slurry from each 

flask. Sample slurries were then mixed with 0.9 mL of double-distilled water in 1.5-mL vials. 

The vials were placed into boiling water for 15 min to deactivate the enzyme. Then, the sample 

slurries were centrifuged in a micro centrifuge (RS-102, REVSCI Co., Lindstrom, MN, USA) at 

10,000 rpm for 15 min. The supernatants were filtered into 2-mL autosampler vials through 0.2-

μm syringe filters (EMD Millipore Corp., Billerica, MA, USA). The filtered samples in the 

autosampler vials were ready for sugar analysis. 

Sugar analysis was done using a high performance liquid chromatography (HPLC) system 

(Shimadzu, Kyoto, Japan) equipped with an RPM-monosaccharide column (300 × 7.8 mm; 

Phenomenex, Torrence, CA, USA) and a refractive index detector (RID-10A, Shimadzu, Kyoto, 

Japan). The mobile phase was 0.6 mL/min of double-distilled water, and oven temperature was 

80 °C. HPLC can identify and quantify individual components of a liquid mixture. 

Sugar yield represents the amount of glucose produced from cellulosic biomass in enzymatic 

hydrolysis. A higher sugar yield means that more glucose is obtained. In this paper, sugar yield 

was determined by the following equation: 

%100  yieldSugar  



EH

EH

M

VG
     (1) 
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where GEH is the glucose concentration (g/L) of slurry in the flask after hydrolysis, MEH is the 

dry weight (g) of cellulosic biomass loaded in the flask before enzymatic hydrolysis, V is the 

total volume (L) of slurry in the flask in enzymatic hydrolysis. 

3 Results and discussion 

Results on particle size (thickness) are shown in Figure 9. For particles produced with 

different tool rake angles, there are no significant differences in particle sizes (thickness). Error 

bars for each data point in Figure 9 (and Figures 11-13) were drawn using the 95% confidence 

intervals of the means. Means of data for each response variable under different experimental 

conditions were compared by one-way analysis of variance (ANOVA) using software Minitab 

(Version 15, Minitab, Inc., State College, PA, USA). The following assumptions are used: (a) 

response variables are normally distributed; (b) samples are independent; and (c) variances of 

populations are equal. 

Figure 10 illustrates particle formation in orthogonal cutting. The cutting edge of a wedge-

shaped tool is perpendicular to the cutting direction. As the tool is forced into the workpiece 

material, the particle (chip) is formed by shear deformation along a shear plane oriented at an 

angle φ (shear angle) with the workpiece surface. Along the shear plane, plastic deformation of 

the workpiece material occurs. Shear angle is an indirect measure of the deformation severity of 

the produced particles. Shear angle φ is determined by Equation (2) (Boothroyd and Knight, 

2006):  

0
0

0
0

sin1

cos

tan





a

a
a

a

c

c


      (2) 
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where ac is the uncut particle thickness, a0 is the particle thickness, γ0 is the rake angle of the tool. 

The uncut particle thickness ac was the thickness of the layer of the workpiece material being 

removed per revolution of the workpiece. In this experimental setup, ac was determined by the 

feedrate (mm/r). According to metal cutting theory (Singal and Singal, 2009; Juneja and Seth, 

2003), when cutting with a tool that has a larger rake angle, the workpiece material undergoes 

less severe deformation. When being cut with a tool that has a smaller rake angle, the material 

undergoes more severe deformation. As shown in Figure 11, shear angle increased when tool 

rake angle increased from 20° to 30°. A smaller tool rake angle would produce a smaller shear 

angle, and cause more severe deformation in produced particles.  

Figure 12 shows that biomass crystallinity index (CI) decreased as tool rake angle decreased. 

This observation could be explained as follows: when a smaller tool rake angle was used, larger 

cutting force would be applied onto the workpiece material and particles would undergo more 

severe deformation. This could cause crystalline regions in cellulose to deform and transform 

into amorphous regions (Fan and Beardmore, 1980). Therefore, CI decreased.  

It is important to note that there was no significant difference in particle thickness when CI 

changed, as shown in Figure 12. Since the surface area of particles was well controlled as a 

constant by the slots cut into the hollow wood cylinder workpiece, biomass particles with 

different crystallinity but the same particle size were produced. Lower biomass crystallinity was 

not associated with smaller particle size. Therefore, the confounding effects of particle size and 

biomass crystallinity were separated.  

Results on sugar yield are shown in Figure 13. It can be seen, from Figures 12 and 13, that 

sugar yield increased as biomass crystallinity decreased. 
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The authors have also studied effects of particle size on sugar yield independently without 

being confounded with biomass crystallinity (Zhang et al., 2013a). In that study, poplar wood 

particles with different levels of particle size but the same biomass crystallinity were produced 

using a lathe. Experimental results show that sugar yield increased as particle size became 

smaller. 

4 Conclusions  

This study demonstrated an approach to separate confounding effects of particle size and 

biomass crystallinity. Hence, it became possible to investigate effects of biomass crystallinity on 

sugar yield independently. The following conclusions can be drawn. 

1) Poplar wood particles produced with different tool rake angles had (statistically) the same 

size (thickness). 

2) Poplar wood particles produced with different tool rake angles had different biomass 

crystallinity. Biomass crystallinity decreased as tool rake angle decreased. 

3) For the three levels of biomass crystallinity tested in this study, sugar yield increased as 

biomass crystallinity index became smaller.  
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Figure 1 Major processes of biofuel manufacturing from poplar wood (after [14]) 
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Figure 2 Poplar wood workpiece preparation 
  

Lumber board Log
a
 Hollow cylinder

b
 

a. 
A poplar wood log was cut by a hole saw from a lumber board. Since the maximum cutting depth of the 

hole saw was smaller than the thickness of the lumber board, the wood log was produced after two cuts, each 
cut from each side of the lumber board. 
b. 

A center hole was first drilled using a twist drill mounted on the tailstock of the lathe. The inner surface of 
the hollow cylinder was machined by a boring tool.  
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Figure 3 Experimental setup 
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Figure 4 Dimensions of the cutting tool. 
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Figure 5 Illustration of eight slots on the workpiece 
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Figure 6 Illustration of poplar particle thickness measurement (not to scale) 
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(a) After cutting (b) After flattening

Particle thickness

 
Figure 7 Pictures of a poplar particle 
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Figure 8 Amorphous and crystalline regions in cellulose (after [3]) 
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Figure 9 Effects of tool rake angle on particle thickness 
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Figure 10 Illustration of particle formation in orthogonal cutting (after (Boothroyd and Knight, 
2006)) 

  

 



25 
 

 
Figure 11 Effects of tool rake angle on shear angle 
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Figure 12 Effects of tool rake angle on crystallinity index 
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Figure 13 Effects of tool rake angle on sugar yield 
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Table 1 Reported relationships between structural features and sugar yield 
 

Structural 
feature 

Relationship between structural 
feature and sugar yield 

Reference 

Biomass 
crystallinity 

As biomass crystallinity 
decreased, sugar yield 
increased. 

(Chang and Holtzapple, 2000; Sinitsyn et al., 1991; 
Fan et al., 1981; Koullas et al., 1990; Caulfield and 
Moore, 1974) 

No correlation. (Puri, 1984; Grethlein, 1985; Gharpuray et al., 1983)

Particle 
size 

As particle size decreased, 
sugar yield increased. 

(Chang and Holtzapple, 2000; Grethlein, 1985; 
Gharpuray et al., 1983; Klass, 1998) 

No correlation. (Sinitsyn et al., 1991; Draude et al., 2001) 
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Table 2 Experimental conditions 
 

Process variable Value 
Tool rake angle 20°, 25°, 30° 

Cutting speed = 4.0 m/s; 
Feedrate = 0.508 mm/r; 
Depth of cut = 8.67 mm. 
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