260 research outputs found

    Thermal structure and exhumation history of the Lesser Himalaya in central Nepal

    Get PDF
    The Lesser Himalaya (LH) consists of metasedimentary rocks that have been scrapped off from the underthrusting Indian crust and accreted to the mountain range over the last ~20 Myr. It now forms a significant fraction of the Himalayan collisional orogen. We document the kinematics and thermal metamorphism associated with the deformation and exhumation of the LH, combining thermometric and thermochronological methods with structural geology. Peak metamorphic temperatures estimated from Raman spectroscopy of carbonaceous material decrease gradually from 520°–550°C below the Main Central Thrust zone down to less than 330°C. These temperatures describe structurally a 20°–50°C/km inverted apparent gradient. The Ar muscovite ages from LH samples and from the overlying crystalline thrust sheets all indicate the same regular trend; i.e., an increase from about 3–4 Ma near the front of the high range to about 20 Ma near the leading edge of the thrust sheets, about 80 km to the south. This suggests that the LH has been exhumed jointly with the overlying nappes as a result of overthrusting by about 5 mm/yr. For a convergence rate of about 20 mm/yr, this implies underthrusting of the Indian basement below the Himalaya by about 15 mm/yr. The structure, metamorphic grade and exhumation history of the LH supports the view that, since the mid-Miocene, the Himalayan orogen has essentially grown by underplating, rather than by frontal accretion. This process has resulted from duplexing at a depth close to the brittle-ductile transition zone, by southward migration of a midcrustal ramp along the Main Himalayan Thrust fault, and is estimated to have resulted in a net flux of up to 150 m^2/yr of LH rocks into the Himalayan orogenic wedge. The steep inverse thermal gradient across the LH is interpreted to have resulted from a combination of underplating and post metamorphic shearing of the underplated units

    Late Silurian zircon U–Pb ages from the Ludlow and Downton bone beds, Welsh Basin, UK

    Get PDF
    The Ludlow Bone Bed (Welsh Basin) is a critical stratigraphic horizon and contains a rich assemblage of fish scales. Units above provide insights into the early evolution of animal and plant life. The bed has not yet been radioisotopically dated. Here, we report 207 secondary ion mass spectrometry (SIMS) ages from 102 zircon (ZrSiO4) grains from the Ludlow (n = 2) and stratigraphically higher Downton (n = 1) bone beds. SIMS ages are middle Ordovician (471.6 ± 20.7 Ma) to late Devonian (375.7 ± 14.6 Ma, 238U–206Pb, ±1σ analytical uncertainty). Cathodoluminescence images show that the youngest ages appear affected by alteration. Chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) U–Pb geochronology was utilized to improve precision. Detrital zircon grains from Downton yield 424.91 ± 0.34/0.42/0.63 Ma and from Ludlow 424.85 ± 0.32/0.41/0.62 Ma (n = 5 each, 238U–206Pb, ±2σ analytical, tracer or systematic uncertainty). These ages provide a maximum deposition age. Results overlap the basal PƙídolĂ­ age (423.0 ± 2.3 Ma) in its stratotype (PoĆŸĂĄry Section, Reporyje, Prague, Czech Republic). The Ludlow Bone Bed marks the base of the local Downton Group, which has previously been correlated with the base of the PƙídolĂ­ Series. The CA-ID-TIMS ages are older than those for other land arthropod-bearing sediments, such as the Cowie Harbour Fish Bed and Rhynie Chert.© 2020 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/ licenses/by/4.0/). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethic

    Developing an inverted Barrovian sequence; insights from monazite petrochronology

    Get PDF
    In the Himalayan region of Sikkim, the well-developed inverted metamorphic sequence of the Main Central Thrust (MCT) zone is folded, thus exposing several transects through the structure that reached similar metamorphic grades at different times. In-situ LA-ICP-MS U–Th–Pb monazite ages, linked to pressure–temperature conditions via trace-element reaction fingerprints, allow key aspects of the evolution of the thrust zone to be understood for the first time. The ages show that peak metamorphic conditions were reached earliest in the structurally highest part of the inverted metamorphic sequence, in the Greater Himalayan Sequence (GHS) in the hanging wall of the MCT. Monazite in this unit grew over a prolonged period between ~37 and 16 Ma in the southerly leading-edge of the thrust zone and between ~37 and 14.5 Ma in the northern rear-edge of the thrust zone, at peak metamorphic conditions of ~790 ◩C and 10 kbar. Monazite ages in Lesser Himalayan Sequence (LHS) footwall rocks show that identical metamorphic conditions were reached ~4–6 Ma apart along the ~60 km separating samples along the MCT transport direction. Upper LHS footwall rocks reached peak metamorphic conditions of ~655 ◩C and 9 kbar between ~21 and 16 Ma in the more southerly-exposed transect and ~14.5–12 Ma in the northern transect. Similarly, lower LHS footwall rocks reached peak metamorphic conditions of ~580 ◩C and 8.5 kbar at ~16 Ma in the south, and 9–10 Ma in the north. In the southern transect, the timing of partial melting in the GHS hanging wall (~23–19.5 Ma) overlaps with the timing of prograde metamorphism (~21 Ma) in the LHS footwall, confirming that the hanging wall may have provided the heat necessary for the metamorphism of the footwall. Overall, the data provide robust evidence for progressively downwards-penetrating deformation and accretion of original LHS footwall material to the GHS hanging wall over a period of ~5 Ma. These processes appear to have occurred several times during the prolonged ductile evolution of the thrust. The preserved inverted metamorphic sequence therefore documents the formation of sequential ‘paleothrusts’ through time, cutting down from the original locus of MCT movement at the LHS–GHS protolith boundary and forming at successively lower pressure and temperature conditions. The petrochronologic methods applied here constrain a complex temporal and thermal deformation history, and demonstrate that inverted metamorphic sequences can preserve a rich record of the duration of progressive ductile thrusting

    The metamorphism and exhumation of the Himalayan metamorphic core, eastern Garhwal region, India

    Get PDF
    [1] Geothermobarometric together with micro- and macro-structural data indicate ductile flow in the metamorphic core of the Himalaya in the Garhwal region of India. Peak metamorphic pressure and temperature increase dramatically across the Main Central Thrust (MCT) from ~5 kbar and ~550°C in the Lesser Himalayan Crystalline Sequence (LHCS) to ~14 kbar and ~850°C at ~3 km above the MCT in the Greater Himalayan Sequence (GHS). Pressures within the GHS then decrease upsection to ~8 kbar while temperatures remain nearly constant at ~850°C up to the structurally overlying South Tibetan Detachment (STD). The GHS exhibits sheath fold geometries are indicative of high degrees of ductile flow. Overprinting ductile structures are two populations of extensional conjugate fractures and normal faults oriented both parallel and perpendicular to the orogen. These fractures crosscut major tectonic boundaries in the region such as the MCT and STD, and are found throughout the LHCS, GHS, and Tethyan Sedimentary Sequence (TSS). The thermobarometric and metamorphic observations are consistent with a form of channel flow. However, channel flow does not account for exhumational structures that formed above the brittle-ductile transition. To explain all of the features seen in the metamorphic core of the Garhwal region of the Himalaya, both the theories of channel flow and critical taper must be taken into account. Channel flow can explain the exhumation of the GHS from the middle crust to the brittle-ductile transition. The most recent extensional deformation is consistent with a supercritical wedge
    • 

    corecore