101 research outputs found

    In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil

    Get PDF
    The ability of a Fe-Mn binary oxide waste to adsorb arsenic (As) in a historically contaminated soil was investigated. Initial laboratory sorption experiments indicated that arsenite [As(III)] was oxidized to arsenate [As(V)] by the Mn oxide component, with concurrent As(V) sorption to the Fe oxide. The binary oxide waste had As(III) and As(V) adsorption capacities of 70 mg g−1 and 32 mg g−1 respectively. X-ray Absorption Near-Edge Structure and Extended X-ray Absorption Fine Structure at the As K-edge confirmed that all binary oxide waste surface complexes were As(V) sorbed by mononuclear bidentate corner-sharing, with 2 Fe at ∼3.27 Ǻ. The ability of the waste to perform this coupled oxidation-sorption reaction in real soils was investigated with a 10% by weight addition of the waste to an industrially As contaminated soil. Electron probe microanalysis showed As accumulation onto the Fe oxide component of the binary oxide waste, which had no As innately. The bioaccessibility of As was also significantly reduced by 7.80% (p < 0.01) with binary oxide waste addition. The results indicate that Fe-Mn binary oxide wastes could provide a potential in situ remediation strategy for As and Pb immobilization in contaminated soils

    An estimate of the local ISW signal, and its impact on CMB anomalies

    Full text link
    We estimate the local density field in redshift shells to a maximum redshift of z=0.3, using photometric redshifts for the 2MASS galaxy catalogue, matched to optical data from the SuperCOSMOS galaxy catalogue. This density-field map is used to predict the Integrated Sachs-Wolfe (ISW) CMB anisotropies that originate within the volume at z<0.3. We investigate the impact of this estimated ISW foreground signal on large-scale anomalies in the WMAP CMB data. We find that removal of the foreground ISW signal from WMAP data reduces the significance of a number of reported large-scale anomalies in the CMB, including the low quadrupole power and the apparent alignment between the CMB quadrupole and octopole.Comment: 8 pages. MNRAS in press. Final minor updates to text and references to match published versio

    StereoTactic radiotherapy for wet Age-Related macular degeneration (STAR):Study protocol for a randomized controlled clinical trial

    Get PDF
    BACKGROUND: The standard of care for neovascular age-related macular degeneration (nAMD) involves ongoing intravitreal injections of anti-angiogenic drugs targeting vascular endothelial growth factor (VEGF). The most commonly used anti-VEGF drugs are ranibizumab, bevacizumab and aflibercept. The main objective of the STAR trial is to determine if stereotactic radiotherapy can reduce the number of anti-VEGF injections that patients with nAMD require. METHODS/DESIGN: STAR is a multicentre, double-masked, randomised, sham-controlled clinical trial. It evaluates a new device (manufactured by Oraya, Newark, CA, USA) designed to deliver stereotactic radiotherapy (SRT) to nAMD lesions. The trial enrols participants with chronic, active nAMD. Participants receive a single SRT treatment (16 Gy or sham) with a concomitant baseline intravitreal injection of 0.5 mg ranibizumab. Thereafter, they attend every month for 24 months, and ranibizumab is administered at the visit if retreatment criteria are met. The primary outcome is the number of pro re nata ranibizumab injections during the first 24 months. Secondary outcomes include visual acuity, lesion morphology, quality of life and safety. Additional visits occur at 36 and 48 months to inspect for radiation retinopathy. The target sample size of 411 participants (randomised 2:1 in favour of radiation) is designed to detect a reduction of 2.5 injections against ranibizumab monotherapy, at 90% power, and a significance level (alpha) of 0.025 (one-sided two-sample t test). This gives 97% power to detect non-inferiority of visual acuity at a five-letter margin. The primary analyses will be by intention to treat. DISCUSSION: The safety and efficacy outcomes will help determine the role of SRT in the management of chronic, active nAMD. TRIAL REGISTRATION: International Standard Randomised Controlled Trial Number: ISRCTN12884465. Registered on 28 November 2014. ClinicalTrials.gov: NCT02243878. Registered on 17 September 2014

    Solid-phase phosphorus speciation in Saharan Bodélé depression dusts and source sediments

    Get PDF
    Phosphorus (P) is one of the most important limiting nutrients for the growth of oceanic phytoplankton and terrestrial ecosystems, which in turn contributes to CO2 sequestration. The solid-phase speciation of P will influence its solubility and hence its availability to such ecosystems. This study reports on the results of X-ray diffraction, electron microprobe chemical analysis and X-ray mapping, chemical extractions and X-ray absorption near-edge spectroscopy analysis carried out to determine the solid-phase speciation of P in dusts and their source sediments from the Saharan Bodélé Depression, the world’s largest single source of dust. Chemical extraction data suggest that the Bodélé dusts contain 28 to 60% (mean 49%) P sorbed to, or co-precipitated with Fe (hydr)oxides, < 10% organic P, 21-50% (mean 32%) detrital apatite P, and 10-22% (mean 15%) authigenic-biogenic apatite P. This is confirmed by the other analyses, which also suggest that the authigenic-biogenic apatite P is likely fish bone and scale, and that this might form a larger proportion of the apatite pool (33 +/− 22%) than given by the extraction data. This is the first-ever report of fish material in aeolian dust, and it is significant because P derived from fish bone and scale is relatively soluble and is often used as a soil fertilizer. Therefore, the fish-P will likely be the most readily form of Bodélé P consumed during soil weathering and atmospheric processing, but given time and acid dissolution, the detrital apatite, Fe-P and organic-P will also be made available. The Bodélé dust input of P to global ecosystems will only have a limited life, however, because its major source materials, diatomite in the Bodélé Depression, undergo persistent deflation and have a finite thickness

    Mobilisation of arsenic from bauxite residue (red mud) affected soils: effect of pH and redox conditions

    Get PDF
    The tailings dam breach at the Ajka alumina plant, western Hungary in 2010 introduced ~1 million m3 of red mud suspension into the surrounding area. Red mud (fine fraction bauxite residue) has a characteristically alkaline pH and contains several potentially toxic elements, including arsenic. Aerobic and anaerobic batch experiments were prepared using soils from near Ajka in order to investigate the effects of red mud addition on soil biogeochemistry and arsenic mobility in soil–water experiments representative of land affected by the red mud spill. XAS analysis showed that As was present in the red mud as As(V) in the form of arsenate. The remobilisation of red mud associated arsenate was highly pH dependent and the addition of phosphate to red mud suspensions greatly enhanced As release to solution. In aerobic batch experiments, where red mud was mixed with soils, As release to solution was highly dependent on pH. Carbonation of these alkaline solutions by dissolution of atmospheric CO2 reduced pH, which resulted in a decrease of aqueous As concentrations over time. However, this did not result in complete removal of aqueous As in any of the experiments. Carbonation did not occur in anaerobic experiments and pH remained high. Aqueous As concentrations initially increased in all the anaerobic red mud amended experiments, and then remained relatively constant as the systems became more reducing, both XANES and HPLC–ICP-MS showed that no As reduction processes occurred and that only As(V) species were present. These experiments show that there is the potential for increased As mobility in soil–water systems affected by red mud addition under both aerobic and anaerobic conditions

    Isolation of SARS-CoV-2 in viral cell culture in immunocompromised patients with persistently positive RT-PCR results

    Get PDF
    Immunocompromised adults can have prolonged acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive RT-PCR results, long after the initial diagnosis of coronavirus disease 2019 (COVID-19). This study aimed to determine if SARS-CoV-2 virus can be recovered in viral cell culture from immunocompromised adults with persistently positive SARS-CoV-2 RT-PCR tests. We obtained 20 remnant SARS-CoV-2 PCR positive nasopharyngeal swabs from 20 immunocompromised adults with a positive RT-PCR test ≥14 days after the initial positive test. The patients\u27

    Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption

    Get PDF
    Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica-organic composites. Here we present data on the formation of silica-lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption) and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and SAXS), spectroscopic, electron microscopy and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica-organic composites from sodium silicate solutions, a widely available and cheap starting material

    Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments

    Get PDF
    The phyllomanganate birnessite is the main Mn-bearing phase in oxic marine sediments, and through coupled sorption and redox exerts a strong control on the oceanic concentration of micronutrient trace metals. However, under diagenesis and mild hydrothermal conditions, birnessite undergoes transformation to the tectomanganate todorokite. The mechanistic details of this transformation are important for the speciation and mobility of metals sequestered by birnessite, and are necessary in order to quantify the role of marine sediments in global trace element cycles. Here we transform a synthetic, poorly crystalline, hexagonal birnessite, analogous to marine birnessite, into todorokite under a mild reflux procedure, developed to mimic marine diagenesis and mild hydrothermal conditions. We characterize our birnessite and reflux products as a time series, employing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), BET surface area analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and extended X-ray absorption fine structure spectroscopy (EXAFS). We provide new insight into the crystallization pathway and mechanism of todorokite formation from birnessite under conditions analogous to those found in marine diagenetic and hydrothermal settings. Specifically we propose a new four-stage process for the transformation of birnessite to todorokite, beginning with todorokite nucleation, then crystal growth from solution to form todorokite primary particles, followed by their self-assembly and oriented growth via oriented attachment to form crystalline todorokite laths, culminating in traditional crystal ripening. We suggest that, contrary to current understanding, trace metals like Ni might retard the transformation of birnessite to todorokite and be released to marine sedimentary pore-waters during this diagenetic process, thus potentially providing a benthic flux of these micronutrients to seawater

    Caesium incorporation and retention in illite interlayers

    Get PDF
    Radioactive caesium (chiefly 137Cs) is a major environmental pollutant. The mobility of Cs in temperate soils is primarily controlled by sorption onto clay minerals, particularly the frayed edges of illite interlayers. This paper investigates the adsorption of Cs to illite at the molecular scale, over both the short and long term. Transmission electron microscopy (TEM) images showed that after initial absorption into the frayed edges, Cs migrated into the illite interlayer becoming incorporated within the mineral structure. Caesium initially exchanged with hydrated Ca at the frayed edges, causing them to collapse. This process was irreversible as Cs held in the collapsed interlayers was not exchangeable with Ca. Over the long term Cs did not remain at the edge of the illite crystals, but diffused into the interlayers by exchange with K. Results from extended X-ray absorption fine structure spectroscopy (EXAFS) and density functional theory modelling confirmed that Cs was incorporated into the illite interlayer and revealed its bonding environment
    corecore