63 research outputs found

    Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP

    Get PDF
    As cancer cells traverse collagen-rich extracellular matrix (ECM) barriers and intravasate, they adopt a fibroblast-like phenotype and engage undefined proteolytic cascades that mediate invasive activity. Herein, we find that fibroblasts and cancer cells express an indistinguishable pericellular collagenolytic activity that allows them to traverse the ECM. Using fibroblasts isolated from gene-targeted mice, a matrix metalloproteinase (MMP)–dependent activity is identified that drives invasion independently of plasminogen, the gelatinase A/TIMP-2 axis, gelatinase B, collagenase-3, collagenase-2, or stromelysin-1. In contrast, deleting or suppressing expression of the membrane-tethered MMP, MT1-MMP, in fibroblasts or tumor cells results in a loss of collagenolytic and invasive activity in vitro or in vivo. Thus, MT1-MMP serves as the major cell-associated proteinase necessary to confer normal or neoplastic cells with invasive activity

    Molecular definitions of autophagy and related processes.

    Get PDF
    Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Autophagy in major human diseases

    Get PDF
    Abstract: Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy‐related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders

    Old Paradoxes and New Opportunities for Appetite Control in Obesity

    No full text
    International audienceHuman obesity is accompanied by alterations in the blood concentrations of multiple circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are elevated in nonsyndromic obesity, while most of the appetite stimulatory hormones are reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In this context, it is important to understand which appetite regulators exhibit a convergent rather than paradoxical behavior and hence are likely to contribute to the maintenance of the obese state. Pharmacological interventions in obesity should preferentially consist of the supplementation of deficient appetite inhibitors or the neutralization of excessive appetite stimulators. Here, we critically analyze the current literature on appetite-regulatory peptide hormones. We propose a short-list of appetite modulators that may constitute the best candidates for therapeutic interventions

    Mammary carcinoma: toward a realistic mouse model of incurable cancers

    No full text
    ABSTRACTAs long as breast cancer (BC) stays under immunosurveillance, it can be controlled by treatments eliciting anticancer immune responses. However, once BC escapes immunosurveillance, it becomes therapeutically uncontrollable. A paper in the Journal for ImmunoTherapy of Cancer describes a new hormone receptor-positive BC cell line generating incurable tumors in C57BL/6 mice
    • 

    corecore