11 research outputs found

    Results of the FY15 Brine Evaporation Bag (BEB) Technology Down-Select Testing

    Get PDF
    The Brine Evaporation Bag (BEB) recently participated in the Brine Concentrator Technology (BCT) Technology Down-Select (TDS). It was found that the BEB System is able to process ISS (International Space Station) Alternate Pretreat Brine at a rate high enough for ISS application as well as future deep space missions. The BEB System is also capable of processing the brine to a solid residue which will add to the stability and safety of storing the brine residue. The results of the BEB testing for the BCT-TDS will be presented in this paper

    KELT-7b: A hot Jupiter transiting a bright V=8.54 rapidly rotating F-star

    Get PDF
    We report the discovery of KELT-7b, a transiting hot Jupiter with a mass of 1.28±0.181.28 \pm 0.18 MJ, radius of 1.530.047+0.0461.53_{-0.047}^{+0.046} RJ, and an orbital period of 2.7347749±0.00000392.7347749 \pm 0.0000039 days. The bright host star (HD33643; KELT-7) is an F-star with V=8.54V=8.54, Teff =678949+50=6789_{-49}^{+50} K, [Fe/H] =0.1390.081+0.075=0.139_{-0.081}^{+0.075}, and logg=4.149±0.019\log{g}=4.149 \pm 0.019. It has a mass of 1.5350.054+0.0661.535_{-0.054}^{+0.066} Msun, a radius of 1.7320.045+0.0431.732_{-0.045}^{+0.043} Rsun, and is the fifth most massive, fifth hottest, and the ninth brightest star known to host a transiting planet. It is also the brightest star around which KELT has discovered a transiting planet. Thus, KELT-7b is an ideal target for detailed characterization given its relatively low surface gravity, high equilibrium temperature, and bright host star. The rapid rotation of the star (73±0.573 \pm 0.5 km/s) results in a Rossiter-McLaughlin effect with an unusually large amplitude of several hundred m/s. We find that the orbit normal of the planet is likely to be well-aligned with the stellar spin axis, with a projected spin-orbit alignment of λ=9.7±5.2\lambda=9.7 \pm 5.2 degrees. This is currently the second most rapidly rotating star to have a reflex signal (and thus mass determination) due to a planetary companion measured.Comment: Accepted to The Astronomical Journa

    TOI-1728b: The Habitable-zone Planet Finder confirms a warm super Neptune orbiting an M dwarf host

    Get PDF
    We confirm the planetary nature of TOI-1728b using a combination of ground-based photometry, near-infrared Doppler velocimetry and spectroscopy with the Habitable-zone Planet Finder.TOI-1728 is an old, inactive M0 star with \teff{} =398032+31= 3980^{+31}_{-32} K, which hosts a transiting super Neptune at an orbital period of \sim 3.49 days. Joint fitting of the radial velocities and TESS and ground-based transits yields a planetary radius of 5.050.17+0.165.05_{-0.17}^{+0.16} R_{\oplus}, mass 26.785.13+5.4326.78_{-5.13}^{+5.43} M_{\oplus} and eccentricity 0.0570.039+0.0540.057_{-0.039}^{+0.054}. We estimate the stellar properties, and perform a search for He 10830 \AA absorption during the transit of this planet and claim a null detection with an upper limit of 1.1%\% with 90\% confidence. A deeper level of He 10830 \AA ~ absorption has been detected in the planet atmosphere of GJ 3470b, a comparable gaseous planet. TOI-1728b is the largest super Neptune -- the intermediate subclass of planets between Neptune and the more massive gas-giant planets -- discovered around an M dwarf. With its relatively large mass and radius, TOI-1728 represents a valuable datapoint in the M-dwarf exoplanet mass-radius diagram, bridging the gap between the lighter Neptune-sized planets and the heavier Jovian planets known to orbit M-dwarfs. With a low bulk density of 1.140.24+0.261.14_{-0.24}^{+0.26} g/cm3^3, and orbiting a bright host star (J 9.6\sim 9.6, V 12.4\sim 12.4), TOI-1728b is also a promising candidate for transmission spectroscopy both from the ground and from space, which can be used to constrain planet formation and evolutionary models.Comment: 21 pages, 12 figures, 4 tables: Accepted for publicatio

    NEID Reveals that The Young Warm Neptune TOI-2076 b Has a Low Obliquity

    Get PDF
    TOI-2076 b is a sub-Neptune-sized planet (R=2.39±0.10RR=2.39 \pm 0.10 \mathrm{R_\oplus}) that transits a young (204±50MYr204 \pm 50 \mathrm{MYr}) bright (V=9.2V = 9.2) K-dwarf hosting a system of three transiting planets. Using spectroscopic observations with the NEID spectrograph on the WIYN 3.5 m Telescope, we model the Rossiter-McLaughlin effect of TOI-2076 b, and derive a sky-projected obliquity of λ=315+16\lambda=-3_{-15}^{+16\:\circ}. Using the size of the star (R=0.775±0.015RR=0.775 \pm0.015 \mathrm{R_\odot}), and the stellar rotation period (Prot=7.27±0.23P_{\mathrm{rot}}=7.27\pm0.23 days), we estimate a true obliquity of ψ=189+10\psi=18_{-9}^{+10\:\circ} (ψ<34\psi < 34^\circ at 95% confidence), demonstrating that TOI-2076 b is on a well-aligned orbit. Simultaneous diffuser-assisted photometry from the 3.5 m Telescope at Apache Point Observatory rules out flares during the transit. TOI-2076 b joins a small but growing sample of young planets in compact multi-planet systems with well-aligned orbits, and is the fourth planet with an age 300\lesssim 300 Myr in a multi-transiting system with an obliquity measurement. The low obliquity of TOI-2076 b and the presence of transit timing variations in the system suggest the TOI-2076 system likely formed via convergent disk migration in an initially well-aligned disk.Comment: Submitted to ApJL, 13 pages, 4 figures, 3 table

    TOI-5205b: A Jupiter transiting an M dwarf near the Convective Boundary

    Get PDF
    We present the discovery of TOI-5205b, a transiting Jovian planet orbiting a solar metallicity M4V star, which was discovered using TESS photometry and then confirmed using a combination of precise radial velocities, ground-based photometry, spectra and speckle imaging. The host star TOI-5205 sits near the eponymous `Jao gap', which is the transition region between partially and fully-convective M dwarfs. TOI-5205b has one of the highest mass ratio for M dwarf planets with a mass ratio of almost 0.3%\%, as it orbits a host star that is just 0.392±0.0150.392 \pm 0.015 MM_{\odot}. Its planetary radius is 1.03±0.03 RJ1.03 \pm 0.03~R_J, while the mass is 1.08±0.06 MJ1.08 \pm 0.06~M_J. Additionally, the large size of the planet orbiting a small star results in a transit depth of 7%\sim 7\%, making it one of the deepest transits of a confirmed exoplanet orbiting a main-sequence star. The large transit depth makes TOI-5205b a compelling target to probe its atmospheric properties, as a means of tracing the potential formation pathways. While there have been radial velocity-only discoveries of giant planets around mid M dwarfs, this is the first transiting Jupiter with a mass measurement discovered around such a low-mass host star. The high mass of TOI-5205b stretches conventional theories of planet formation and disk scaling relations that cannot easily recreate the conditions required to form such planets.Comment: Submitted to ApJ. Comments are welcome. arXiv admin note: text overlap with arXiv:2203.0717

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    The Influence of 10 Unique Chemical Elements in Shaping the Distribution of Kepler Planets

    No full text
    The chemical abundances of planet-hosting stars offer a glimpse into the composition of planet-forming environments. To further understand this connection, we make the first ever measurement of the correlation between planet occurrence and chemical abundances for ten different elements (C, Mg, Al, Si, S, K, Ca, Mn, Fe, and Ni). Leveraging data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and Gaia to derive precise stellar parameters (sigma(R star) approximate to 2.3%, sigma(M star) approximate to 4.5%) for a sample of 1018 Kepler Objects of Interest, we construct a sample of well-vetted Kepler planets with precisely measured radii (sigma(Rp) approximate to 3.4%). After controlling for biases in the Kepler detection pipeline and the selection function of the APOGEE survey, we characterize the relationship between planet occurrence and chemical abundance as the number density of nuclei of each element in a star's photosphere raised to a power, beta. varies by planet type, but is consistent within our uncertainties across all ten elements. For hot planets (P = 1-10 days), an enhancement in any element of 0.1 dex corresponds to an increased occurrence of approximate to 20% for super-Earths (R-p = 1-1.9 R-circle plus) and approximate to 60% for sub-Neptunes (R-p = 1.9-4 R-circle plus). Trends are weaker for warm (P = 10-100 days) planets of all sizes and for all elements, with the potential exception of sub-Saturns (R-p = 4-8 R.). Finally, we conclude this work with a caution to interpreting trends between planet occurrence and stellar age due to degeneracies caused by Galactic chemical evolution and make predictions for planet occurrence rates in nearby open clusters to facilitate demographics studies of young planetary systems

    An In-Depth Look at TOI-3884b: a Super-Neptune Transiting a M4 Dwarf with Persistent Star Spot Crossings

    Full text link
    We perform an in-depth analysis of the recently validated TOI-3884 system, an M4 dwarf star with a transiting super-Neptune. Using high precision light curves obtained with the 3.5 m Apache Point Observatory and radial velocity observations with the Habitable-zone Planet Finder (HPF), we derive a planetary mass of 32.6 +7.3 -7.4 Earth Masses and radius of 6.4 +/- 0.2 Earth Radii. We detect a distinct star spot crossing event occurring just after ingress and spanning half the transit for every transit. We determine this spot feature to be wavelength-dependent with the amplitude and duration evolving slightly over time. Best-fit star spot models show that TOI-3884b possesses a misaligned (λ\lambda = 75 +\- 10 degrees) orbit which crosses a giant pole-spot. This system presents a rare opportunity for studies into the nature of both a misaligned super-Neptune and spot evolution on an active mid-M dwarf.Comment: Accepted to A
    corecore