1,305 research outputs found
GHM: A generalized Hamiltonian method for passivity test of impedance/admittance descriptor systems
A generalized Hamiltonian method (GHM) is proposed for passivity test of descriptor systems (DSs) which describe impedance or admittance input-output responses. GHM can test passivity of DSs with any system index without minimal realization. This frequency-independent method can avoid the time-consuming system decomposition as required in many existing DS passivity test approaches. Furthermore, GHM can test systems with singular D + DT where traditional Hamiltonian method fails, and enjoys a more accurate passivity violation identification compared to frequency sweeping techniques. Numerical results have verified the effectiveness of GHM. The proposed method constitutes a versatile tool to speed up passivity check and enforcement of DSs and subsequently ensures globally stable simulations of electrical circuits and components. Copyright 2009 ACM.published_or_final_versio
Low-cost global MPPT scheme for photovoltaic systems under partially shaded conditions
Maximum Power Point Tracking (MPPT) is a technique applied to improve the efficiency of power conversion in Photovoltaic (PV) systems. Under partially shadowed conditions, the Power-Voltage (P-V) characteristic exhibits multiple peaks and the existing MPPT methods such as the Perturb and Observe (P&O) are incapable of searching for the Global Maximum Power Point (GMPP). This paper proposes a low-cost on-line MPPT scheme to overcome this drawback. By using hybrid numerical searching process, the operating point approaches Local Maximum Power Points (LMPPs) gradually and the GMPP is caught by comparing all the LMPPs. Simulation results prove the effectiveness and correctness of the proposed method. © 2013 IEEE.published_or_final_versio
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences
Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data complexity has restricted their clinical application. A library (1,325 mutations) predictive of DR for 15 anti-tuberculosis drugs was compiled and validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online ‘TB-Profiler’ tool was developed to report DR and strain-type profiles directly from raw sequences. Using our DR mutation library, in silico diagnostic accuracy was superior to some commercial diagnostics and alternative databases. The library will facilitate sequence-based drug-susceptibility testing
Structural insights into the transcriptional and translational roles of Ebp1.
Accepted versio
Flatness-Aware Minimization for Domain Generalization
Domain generalization (DG) seeks to learn robust models that generalize well
under unknown distribution shifts. As a critical aspect of DG, optimizer
selection has not been explored in depth. Currently, most DG methods follow the
widely used benchmark, DomainBed, and utilize Adam as the default optimizer for
all datasets. However, we reveal that Adam is not necessarily the optimal
choice for the majority of current DG methods and datasets. Based on the
perspective of loss landscape flatness, we propose a novel approach,
Flatness-Aware Minimization for Domain Generalization (FAD), which can
efficiently optimize both zeroth-order and first-order flatness simultaneously
for DG. We provide theoretical analyses of the FAD's out-of-distribution (OOD)
generalization error and convergence. Our experimental results demonstrate the
superiority of FAD on various DG datasets. Additionally, we confirm that FAD is
capable of discovering flatter optima in comparison to other zeroth-order and
first-order flatness-aware optimization methods.Comment: Accepted by ICCV202
Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton
Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration
Recommended from our members
The LRRK2 signalling system
The LRRK2 gene is a major contributor to genetic risk for Parkinson's disease and understanding the biology of the leucine-rich repeat kinase 2 (LRRK2, the protein product of this gene) is an important goal in Parkinson's research. LRRK2 is a multi-domain, multi-activity enzyme and has been implicated in a wide range of signalling events within the cell. Because of the complexities of the signal transduction pathways in which LRRK2 is involved, it has been challenging to generate a clear idea as to how mutations and disease associated variants in this gene are altered in disease. Understanding the events in which LRRK2 is involved at a systems level is therefore critical to fully understand the biology and pathobiology of this protein and is the subject of this review
A Search for Dark Higgs Bosons
Recent astrophysical and terrestrial experiments have motivated the proposal
of a dark sector with GeV-scale gauge boson force carriers and new Higgs
bosons. We present a search for a dark Higgs boson using 516 fb-1 of data
collected with the BABAR detector. We do not observe a significant signal and
we set 90% confidence level upper limits on the product of the Standard
Model-dark sector mixing angle and the dark sector coupling constant.Comment: 7 pages, 5 postscript figures, published version with improved plots
for b/w printin
- …
