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ABSTRACT
A generalized Hamiltonian method (GHM) is proposed for
passivity test of descriptor systems (DSs) which describe
impedance or admittance input-output responses. GHM can
test passivity of DSs with any system index without mini-
mal realization. This frequency-independent method can
avoid the time-consuming system decomposition as required
in many existing DS passivity test approaches. Furthermore,
GHM can test systems with singular D + DT where tradi-
tional Hamiltonian method fails, and enjoys a more accu-
rate passivity violation identification compared to frequency
sweeping techniques. Numerical results have verified the ef-
fectiveness of GHM. The proposed method constitutes a ver-
satile tool to speed up passivity check and enforcement of
DSs and subsequently ensures globally stable simulations of
electrical circuits and components.

1. INTRODUCTION
Due to the increasing operation speed and chip density

of VLSI circuits, macromodeling and model order reduction
(MOR) of interconnects, packages and on-chip components
have become indispensable in design cycle. In recent years,
numerous MOR methods for regular and descriptor sys-
tems (DSs) have been proposed, including Krylov-subspace
projections [12, 4] and Gramian-based truncations [13, 14].
Meanwhile, fitting the frequency-dependent impedance, ad-
mittance or scattering parameters can also produce standard
or descriptor state space models [8]. Since the original cir-
cuits and components are usually passive, it is desirable to
preserve system passivity in reduced-order models for glob-
ally stable simulations.

Unfortunately, passivity is not always guaranteed in sys-
tem modeling and model order reduction. Nonpassive mod-
els may be produced by some stability-preserving algorithms
(e.g., vector fitting (VF) [8] and MPVL [4]). On finite-
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precision machines, even the passivity-preserving algorithms
(e.g., PRIMA [12] and passivity-preserving balanced trun-
cation [13]) may still produce marginally nonpassive mod-
els. For those nonpassive systems, passivity enforcement can
be applied to eliminate or mitigate violations by model pa-
rameter perturbation [7] or waveform shaping [16]. These
enforcements need passivity test in advance.

As a generalization of regular systems, DSs are frequently
encountered in VLSI simulations, such as MNA (modified
nodal analysis) description of RLC networks and models
from EM field solvers (such as PEEC). However, compared
with their standard state space counterparts, DS passivity
tests are much less developed. Extended LMI [5] test was
proposed for DSs, but the O(n6) complexity renders it im-
practical for medium and large size systems. Some DS tests
decompose the original system and then test the proper and
improper parts separately, such as [15, 2]. However, these
methods usually require the DS to be minimal, which is a
strong condition in circuit and component models. The ex-
tra system decomposition and transformation may induce
large numerical errors (caused by ill conditioning in matrix
inversion). Therefore, it is desired to avoid system decom-
position in DS passivity assessments. An eigenvalue-based
DS passivity characterization [1] was proposed for SISO sys-
tems, but it can not be applied to MIMO DSs. Furthermore,
in order to perform passivity compensation, it is highly de-
sired to identify passivity violation (frequency) intervals.
Frequency sweeping methods [10] detect nonpassive regions
at a set of sampling points, which enjoy cheap computation
but may miss nonpassive regions among sampling points.
In regular systems, Hamiltonian method [7] is widely used
for passivity test, which can accurately report the bound-
ary frequencies that pinpoint passivity violation intervals.
Therefore, it is attractive to extend Hamiltonian method to
DSs to speed up passivity test and enforcement for reduced
models of passive circuits and components.

The main contribution of this paper includes: 1) GHM,
proposed for the first time in the literature, for DS passivity
assessment; 2) ImPT, as a preprocessing step of GHM that
characterizes the improper part without system decompo-
sition; 3) an equivalent system model conversion to adapt
GHM to systems where D + DT is singular; 4) the obser-
vation that GHM is a superset of the traditional Hamil-
tonian method. And the advantages of GHM include: 1)
GHM is not restricted by DS system index and the minimal-
realization requirement, so it is more flexible than existing
DS passivity tests; 2) The cost of GHM is several orders
lower than LMI’s (O(n3) versus O(n6)); 3) GHM can iden-
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tify passivity violation regions by finding the boundary fre-
quency points, with a higher accuracy than DS sweeping
methods; 4) GHM can be applied to both DSs and regular
systems with possibly singular D + DT , while Hamiltonian
method can not; 5) The proposed approach avoids DS sys-
tem decomposition and transformation, thus is faster and
more reliable than decompose-and-test methods.

2. PRELIMINARIES

2.1 Review of LTI System Passivity
The (strict) passivity of a linear time-invariant (LTI) ad-

mittance or impedance system is equivalent to the (strict)
positive realness of its transfer matrix H(s).

An m×m real matrix-valued rational transfer matrix H(s)
is positive real if and only if [5]:

1) H(s) is analytical on the open right half plane Re(s) >
0;

2) H(jω)+H∗(jω) ≥ 0 (> for strict positive realness) for
all ω ∈ R, if jω is not a pole of H(s), where ∗ means the
conjugate transpose operation;

3) If jω0 or ∞ is a pole of H(s), then it is simple and the
associated m × m residual matrix is positive semidefinite.

Here we briefly introduce the Hamiltonian method widely
used in regular system passivity test and compensation.

Theorem 1: An admittance/impedance regular state-
space system (A, B, C, D) is strictly passive if and only if
D + DT is positive definite and the following associated
Hamiltonian matrix M has no purely imaginary eigenval-
ues:

M =

[
A − B(D + DT )−1C −B(D + DT )−1BT

CT (D + DT )−1C −AT + CT (D + DT )−1BT

]
.

(1)
According to this theorem, passivity violation occurs at

the frequency point fa = ωa

2π
if jωa is a purely imaginary

eigenvalue of M . Hamiltonian method is accurate for iden-
tifying passivity violation regions, however, it is only appli-
cable to standard state-space models and is restricted by the
requirement of D + DT being invertible (i.e., nonsingular).
These restrictions can be very strong in VLSI models.

2.2 Descriptor System
Many circuits and components can be described by the

LTI descriptor system (DS):

Eẋ = Ax + Bu,

y = Cx + Du,
(2)

where E, A ∈ Rn×n, B, CT ∈ Rn×m, D ∈ Rm×m, and
rank(E) ≤ n. If E is invertible, (2) describes a regular
system. The transfer matrix of the above DS is

H(s) = D + C(sE − A)−1B, (3)

where the matrix pencil (E, A) is assumed regular, i.e., there
exists s0 ∈ C such that det(s0E−A) �= 0. The matrix pencil
(E, A) can be transformed to the Weierstrass form [14]:

(E, A) = W (

[
Iq 0
0 N

]
,

[
F 0
0 In−q

]
)T, (4)

where Ii is the identity matrix of dimension i, W and T are
invertible, and F and N correspond to the finite and infinite
generalized eigenvalues of (E, A), respectively. Assuming

the nilpotent matrix N being of index μ (i.e., Nμ = 0 and
Nμ−1 �= 0), the DS transfer matrix (4) can be rewritten as

H(s) = Cp(sI − F )−1Bp + M0︸ ︷︷ ︸
Hp(s)

+

μ−1∑
k=1

skMk

︸ ︷︷ ︸
Himp(s)

, (5)

where
[

Cp C∞

]
= CT−1 and

[
Bp

B∞

]
= W−1B, M0 =

D − C∞B∞, Mk = −C∞NkB∞ (k = 1, ..., μ − 1). Hp(s)
and Himp(s) are the proper and improper parts, respectively.
The proper and improper sub-systems can be extracted by
Weierstrass decomposition [14] or the faster projector tech-
nique [11], but these decompositions are numerically unsta-
ble because numerical errors may be induced by the possibly
ill-conditioned matrix inversions. Note that μ is also called
the system index of a DS.

2.3 Passivity of DSs
The passivity test of DSs is much more involved than its

regular system counterpart. In [5] an extended LMI test has
been developed for DSs.

Theorem 2: (Sufficient condition)
If there exists a solution X to the following LMIs:[

AT X + XT A XT B − C
BT X − CT −D − DT

]
≤ 0, ET X = XT E ≥ 0,

(6)
then H(s) defined by (3) is positive real.

Theorem 3: (Necessary condition)
Assume that (E, A, B, C, D) is a minimal realization of

H(s) and D + DT ≥ M0 + MT
0 , then the LMIs in (6) have

a solution X if H(s) is positive real.
For regular systems, since E can be absorbed into A and

B, the LMI test in Theorems 2 and 3 reduce to the stan-
dard LMI test with E = I. LMI method is reliable but can
not detect nonpassive intervals, and the prohibitively expen-
sive computation (O(n6) complexity) renders it impractical
for medium and large size DSs. In circuit and component
DSs, an extra reduction to the minimal realization further
increases the computational cost.

For an admittance/impedance DS with a transfer matrix
described in (5), it is passive if and only if:

1) the proper part Hp(s) is positive real;
2) M1 ≥ 0 and Mk = 0 for any k ≥ 2.
In a minimal DS, condition 2) implies the system index is

at most 2. Based on this assumption, some decompose-and-
test flows have been proposed, e.g., Weierstrass test [2] and
skew-Hamiltonian/Hamiltonian method (SHH) [15]. Unfor-
tunately, the minimal-realization assumption is a very strong
condition in DSs from circuit simulations. Due to the ex-
tra system decomposition, SHH and Weierstrass test require
multiple SVDs, Schur and QR decompositions. And prac-
tical implementations show that transforming proper parts
to regular systems may induce numerical errors.

To identify passivity violation regions, various frequency
sweeping methods have been investigated (e.g., [10] and ref-
erences therein) for DSs. Although some adaptive sampling
techniques can be used to improve its accuracy, erroneous
results may still be reported due to the frequency-dependent
nature, therefore, sweeping method still can not replace the
accurate Hamiltonian method in passivity characterization
and enforcement.
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3. GHM TEST FOR DS PASSIVITY

3.1 ImPT for Testing Improper Parts
Since some circuit and component models have impulsive

responses, we first propose ImPT (Improper Part Test),
without the expensive system decomposition.

For a stable DS, all finite system poles are located on the
open left half plane, so (sE−A) is invertible for any s ∈ R+.
We assume that Mk �= 0 for k = ζ − 1 and Mk = 0 for any
k ≥ ζ, where ζ is a positive integer satisfying ζ ≤ μ (ζ = μ
in minimal DSs). The DS of interest is nonpassive if ζ ≥ 3
(which implies repeated infinite system poles), so the first
step of DS passivity test is to compute ζ.

Given two positive real scalars si (i = 1, 2) with s2 = ηs1

(η > 1), if si is large enough, sζ−1
i Mζ−1 dominates H(si),

Hp(si) ≈ M0 and Mk

s
ζ−1−k
i

(k = 0, ..., ζ − 2) approaches zero.

In this case the matrix norm of H(si) is

‖H(si)‖ = sζ−1
i

∥∥∥∥∥Mζ−1 +
Mζ−2

si

+ · · · +
Hp(si)

sζ−1
i

∥∥∥∥∥ , (7)

and since Mζ−1 +
Mζ−2

si
+ · · · +

Hp(si)

s
ζ−1

i

≈ Mζ−1,

‖H(s2)‖

‖H(s1)‖
= ηζ−1

∥∥∥∥Mζ−1 +
Mζ−2

s2
+ · · · +

Hp(s2)

s
ζ−1

2

∥∥∥∥∥∥∥∥Mζ−1 +
Mζ−2

s1
+ · · · +

Hp(s1)

s
ζ−1

1

∥∥∥∥
≈ ηζ−1.

(8)

Therefore, the system index can be computed by

ζ =

[
logη(

‖H(s2)‖

‖H(s1)‖
)

]
+ 1, (9)

where [o] represents rounding. In practical implementations,
η can be set around 10− 100, and we may start with a ran-
domly selected number (e.g., s1 = 105) and then replace s1

with s1η until
∣∣∣[logη( ‖H(s2)‖

‖H(s1)‖
)
]
− logη( ‖H(s2)‖

‖H(s1)‖
)
∣∣∣ < δ. Here

δ is a small positive constant used to control numerical er-
rors. Since s1 is exponentially increased, the iteration can
converge very fast (only after 3− 5 iterations for most cases
in practice). If ζ ≥ 3, we conclude that the DS of interest is
nonpassive, because M2 �= 0.

If ζ = 2 (which implies M1 �= 0 and Mk = 0 for k ≥ 2), the
improper part can be computed without system decomposi-
tion. Noting that if si (i = 1, 2) is large enough, Hp(si) ap-
proaches M0, thus H(si) = Hp(si)+Himp(si) ≈ siM1 +M0,
which leads to

M1 =
Himp(s1) − Himp(s2)

s1 − s2

≈
H(s1) − H(s2)

s1 − s2
.

(10)

Analogous to (9), with an error control, (10) can also com-
pute M1 with a high accuracy. Checking the positive semi-
definiteness of the usually small-size M1 is straightforward,
but testing the passivity of the proper part is much more
involved.

In impulse-free DSs (ζ = 1), directly applying (8) and (9)
might produce inaccurate results, because the denominators
approach zero if M0 = 0. In this case we randomly generate
a nonzero m × m matrix P whose matrix norm should not

be too small, and replace H(si) with H(si) + P . After this
modification, ζ can be accurately computed by (9). Note
that this modification does not change the result when ζ > 1.

In the rest of this paper, it is assumed that the improper
part has been tested by ImPT, and M1 ≥ 0 (or otherwise
the system is nonpassive and the passivity test is complete).
In this case Hp(jω) + H∗

p (jω) = H(jω) + H∗(jω).

3.2 Proposed Theory of GHM
Proposed Theorem : Assume that in the stable de-

scriptor system H(s) = C(sE − A)−1B + D, ζ = 1 or 2

and M1 ≥ 0 if ζ = 2. If λ is not an eigenvalue of D+DT

2
,

then λ is an eigenvalue of H(jω)+H∗(jω)
2

if and only if jω is
a generalized eigenvalue of the matrix pencil (J, K), with

J =

[
A + BQ−1C BQ−1BT

−CT Q−1C −AT − CT Q−1BT

]
,

K =

[
E 0
0 ET

]
,

(11)

where Q = (2λI − D − DT ).
Note that J is a 2n× 2n Hamiltonian matrix, this is why

this method is named as generalized Hamiltonian method.

If λ is an eigenvalue of D+DT

2
, to use this theorem we need

to perform an equivalent model conversion in advance (see
Section 3.3). Now we prove this theorem.

Sufficiency: As E, A, B, C and D are all real matrices,
H∗(jω) can be replaced by HT (−jω). The proof starts with

the assumption that λ is an eigenvalue of H(jω)+H∗(jω)
2

, and
x �= 0 is the corresponding eigenvector, thus

(H(jω) + H∗(jω))x

= {
[

C BT
]
(jω

[
E

ET

]
−

[
A

−AT

]
)−1

×

[
B

−CT

]
+ D + DT }x

= 2λx.

(12)

Since λ is not an eigenvalue of D+DT

2
, therefore, (2λI −

D−DT ) is invertible. We denote (2λI −D−DT ) by Q and
rewrite (12) as

Q−1 [
C BT

]
z = x, (13)

where

z =

[
jωE − A

jωET + AT

]−1 [
B

−CT

]
x.

Moreover, z is nonzero (otherwise x = 0, observed from
(13)). And next, we pre-multiply both sides of (13) by[

jωE − A
jωET + AT

]−1 [
B

−CT

]
, leading to

[
jωE − A

jωET + AT

]−1 [
B

−CT

]
Q−1

×
[

C BT
]
z = z.

(14)

Multiply both sides of (14) by

[
jωE − A

jωET + AT

]
,
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Figure 1: A nonpassive DS without crossover points.

it is straightforward to verify that (14) is equivalent to

(

[
A

−AT

]
+

[
B

−CT

]
Q−1 [

C BT
]
)z

= jω

[
E

ET

]
z.

(15)

Since z �= 0, jω is a generalized eigenvalue of the matrix pen-
cil (J, K) with z being a corresponding generalized eigen-
vector.

Necessity: We start the proof from (14). Denoting w :=
Q−1

[
C BT

]
z (which is also a nonzero vector) and pre-

multiplying both sides of (14) by Q−1
[

C BT
]

we reach

Q−1 [
C BT

] [
jωE − A

jωET + AT

]−1

×

[
B

−CT

]
w = w,

(16)

which is equivalent to (12), implying λ being an eigenvalue

of H(jω)+H∗(jω)
2

.
Passivity Test: The proposed GHM theorem can be ap-

plied to identify nonpassive regions by computing the crit-
ical frequency points of passivity violations. Setting λ = 0
in (11), the purely imaginary generalized eigenvalue jω of
(J, K) defines a boundary frequency ω (ω = 2πf), where

the eigenvalue of H(jω)+H∗(jω)
2

crosses the imaginary axis on
the complex plane. And the matrix pencil (J0, K0) for DS
passivity test is

J0 =

[
A − B(D + DT )−1C −B(D + DT )−1BT

CT (D + DT )−1C −AT + CT (D + DT )−1BT

]
,

K0 = K.
(17)

On the other hand, it is worth noting that if no purely
imaginary result is obtained in the generalized eigenvalue
solution, the system might still be non-passive (if M0 + MT

0

is not positive definite). An illustrative example is given in
Fig. 1. There is no crossover point for this DS, but a spectral
curve is consistently below zero, implying that the system
is non-passive at any frequency band. Therefore, for further
confirmation we also need to test the positive definiteness of
H(jω0)+H∗(jω0)

2
at a sampling point ω0. The frequency point

ω0 can be randomly selected. If H(jω0)+H∗(jω0)
2

is positive
definite, the DS is strictly passive, or otherwise nonpassive
at any frequency point.

Note that the passivity test matrix pencil in (17) is a
special case of (11). With the perturbation theory of Hamil-

No

No

Given a DS described by (E,A,B,C,D)

Is E
singular?

System is non-passive

Use equivalent model
conversion in (19) to get a

new DS.

Form (J 0, K0)

Does (J0,K0) have
imaginary generalized

eigenvalues?

Compute M 1 by (10)

Form the Hamiltonian
matrix M in (1)

Does M have
imaginary

eigenvalues?

System is passive

       D+D    singular?

       D+D    singular?
 M1>=0  ?

Compute at

Yes

Yes

Yes

Yes

No

Yes

No

NoYes

Yes

No

No

Is              positive
real?

T

T

Traditional
Hamiltonian methodCompute     by (9)

=2

=1>=3

ImPT

Figure 2: The complete GHM test flow for DSs.

tonian matrix (pencil), (11) is expected to be used to com-
pensate the passivity of DS models.

3.3 Equivalent Model Conversion
At the first glance, GHM test also requires D + DT to

be nonsingular (as illustrated in (17)). This condition is
not satisfied in many practical DSs, e.g., many DSs formed
by MNA, PEEC modeling and their reduced models where
D is usually a zero matrix. In this section, we propose an
equivalent model conversion to make GHM also applicable
to these cases. The proposed conversion generates a new
DS described by (E′, A′, B′, C′, D′) with a transfer matrix
H ′(s) = H(s).

Assume that D + DT is singular and α ∈ R is not an
eigenvalue of D, which implies

Dα = αI − D, (18)

is nonsingular. The new DS can be formed as follows:

E′ =

[
E

0

]
, A′ =

[
A

(αI − D)−1

]
,

B′ =

[
B
I

]
, C′ =

[
C I

]
,

D′ = αI.

(19)

And the new transfer matrix is given as

H ′(s) = C′(sE′ − A′)−1B′ + D′

=
[

C I
] [

sE − A
(D − αI)−1

]−1 [
B
I

]
+ αI

= C(sE − A)−1B + D − αI + αI

= H(s),
(20)
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Figure 3: Frequency response of the MNA model:
(a) original response and (b) proper part.

thus the transfer matrix remains unchanged after the pro-
posed conversion. In the new DS, D′ + D′T = 2αI is non-
singular, so the passivity of H(s) can be assessed by sub-
stituting E′, A′, B′, C′, D′ to the matrix pencil defined in
(17).

3.4 Connection to Traditional Hamiltonian
Method

Traditional Hamiltonian method is widely used in passiv-
ity test and enforcement of standard state-space models. We
assume E = I for regular systems without loss of general-
ity. In this case, K reduces to a 2n × 2n identity matrix,
and the generalized eigenvalue solution of (J, K) reduces to
a standard eigenvalue solution of J defined in (11), which
has been widely used in passivity enforcement [7]. To check
passivity, we further set λ = 0, leading to

J0 = M, (21)

where M is the Hamiltonian matrix defined in (1). There-
fore, Hamiltonian method is a special case of GHM. Both of
them detect passivity violation regions by finding boundary
frequencies, but GHM can deal with DS as well as regular
systems with singular D + DT , which implies much wider
application areas than traditional Hamiltonian method.

3.5 Complete GHM Test Flow
The complete GHM test flow is illustrated in Fig. 2 where

ImPT and traditional Hamiltonian method are also included.
The proposed flow is summarized as follows.

1. For descriptor systems (with singular E), check the
improper part by ImPT and then test the proper part
by GHM. If D is singular, equivalent model conversion
is performed in advance.

2. For regular systems with singular D, perform GHM
test on the DS model generated by equivalent model
conversion.

3. For regular systems with invertible D, test system pas-
sivity by the traditional Hamiltonian method.

Note that we need to test H(jω0) at a sampling frequency
point ω0 if no crossover points are found. For regular sys-
tems, H(jω0) can be selected as H(j∞) = D. In many
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literatures, the positive definiteness of D + DT is evaluated
before computing the eigenvalues of M . However, testing
H(jω0) is performed in the last step in our GHM flow be-
cause identifying nonpassive regions is more important than
just verifying if a system is passive or not. Since the main
computation of GHM in DSs is a generalized eigenvalue solu-
tion, the numerical complexity is O(n3) (see [6] for details).

4. NUMERICAL EXAMPLES
This section presents some numerical examples to illus-

trate the accuracy and efficiency of GHM DS passivity test.
All experiments are performed in MATLAB R2006a on a
2.66 GHz 2G-RAM PC. Due to the finite machine preci-
sion and numerical errors of generalized eigenvalue solution,
the computed imaginary generalized eigenvalues λk might in
fact appear as conjugate pairs λk = ak ± jbk (ak, bk ∈ R),
with numerical noise in their real parts. These errors are
also observed in traditional Hamiltonian method. Therefore
high-precision generalized and standard eigenvalue solvers
are desired, but this is beyond the scope of this paper. As
a remedy, we use a threshold method in this paper to filter
out the noise: a small positive constant tol is selected as
the tolerance, and only those solutions satisfying |ak| < tol
are regarded as purely imaginary results. Since |ak| is very
small, the crossover points can be accurately selected out by
the threshold scheme.

An MNA example with an improper part: To show
the efficiency and accuracy of ImPT for testing improper
parts, we perform experiments on an MNA example which
describes an RLC network. We first stress that since RLC
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Figure 6: Real part of Hr(s) (the transfer function
of the PEEC reduced model).

Table 1: GHM test results on the reduced model.
Imaginary generalized Hr(jω)
eigenvalues of (J0, K0)

3.65e-13 ± j3.3078 0.0000 +j0.0031
5.00e-14 ± j1.2345 0.0000 −j0.0060

networks are passive, the computed ζ via (9) can only be 2
or 1 and M1 (if exists) should be positive semidefinite. In
this example, the RLC network is realized by a 9-input-9-
output DS with dimension of 10913. The frequency response
of port-2 to port-2 is shown in Fig. 3(a). Setting s1 = 105

and s2 = 106 (η = 10), we get ζ = 2. This result agrees
with Fig. 3(a), where the response is linear in high-frequency
band implying that M1 �= 0 and Mk = 0 for k ≥ 2. The CPU
time is 2 seconds. We also test projector technique [11] and
Weierstrass decomposition. Projector technique also pro-
duces ζ = 2, but it costs 132 seconds. Weierstrass decom-
position can not work in this example due to its expensive
requirement on physical memory. We further compute the
improper part by (10), giving the 9 × 9 M1 as follows:⎡
⎢⎢⎢⎣

1.0364 × 10−4

. . .

1.0364 × 10−4

3.4915 × 10−3

⎤
⎥⎥⎥⎦ ,

(22)
which is positive definite. To show the accuracy of (10), we
verify if H(s)−sM1 is impulse-free. Firstly, H(si)−siM1+P
(see Section 3.1) is substituted back to (9). For the new
system, we get ζ = 1. Meanwhile, the port-2 to port-2
response of H(s) − sM1 is plotted in Fig. 3(b), which also
shows it is impulse-free.

A PEEC example: We verify the accuracy of GHM by
an admittance DS and its reduced model, both of which are
nonpassive in the low-frequency band. The original SISO DS
is from partial element equivalent circuit (PEEC) modeling
of a patch antenna structure [9], realized by (E, A, B, C, D)
of dimension 480 with D = 0. The order-51 reduced model is
obtained by PRIMA. Their frequency responses are plotted
in Fig. 4. Via (9) we get ζ = 1 for the two models, so they
are both impulse-free. By setting α to 1, equivalent model
conversion in (19) results in D′ = I for both of them.

For the original system, GHM test costs 8.80 seconds and
produces 118 imaginary generalized eigenvalues, which cor-
responds to 59 boundary points. At the same time, 29 fre-
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Figure 7: Spectral curves of the VF model.

Table 2: GHM test results on the VF model.
Imaginary generalized Crossover
eigenvalues of (J0, K0) frequencies rad/sec
−0.0000 ±j1.5984e4 15984

0.0000 ±j1.4068e4 14068
−0.0000 ±j1.2410e4 12410

0.0000 ±j1.2009e4 12009
0.0000 ±j0.9907e4 9907

−0.0000 ±j0.8924e4 8924

quency points are detected by sweeping test (shown in Fig. 5
where Hs(s) is the frequency response obtained by sweeping
1000 sampling points). The 29 points are all contained in
GHM test results. However, the other 30 crossover points
are missed in frequency sweeping. We further compute the
transfer functions at the 59 points obtained from GHM (de-
noted by Hc(s)). Fig. 5 shows that the real part of Hc(s) is
zero, so all of the 59 points are boundary frequencies.

For the reduced model, GHM test produces 4 imaginary
generalized eigenvalues presented in Table 1, which implies
passivity violations at 3.3078 rad/sec and 1.2345 rad/sec.
The GHM results coincide with the curve in Fig. 6, where
Hr(s) is the transfer function of the reduced model and the
crossover points of its real part with the zero horizontal line
are marked by diamonds. The GHM CPU time on the re-
duced model is 0.03 second.

A VF Example: We use this example to show GHM’s
validity in MIMO DSs. This model is generated from the
frequency-dependent admittance parameters of a 6-port fil-
ter array. We fit its admittance transfer matrix by VF using
a common set of 8 poles, and get a DS state space realization
of order 6×8+6×2 = 60. Analogous to the PEEC example,
ImPT shows ζ = 1, so this DS is impulse-free. GHM test
produces 12 purely imaginary generalized eigenvalues listed
in Table 2. We also plot the 6 corresponding crossover fre-
quency points (marked by diamonds) in Fig. 7. The GHM
test results coincide well with the behaviors of the eigenvalue
curves of H(jω) + H∗(jω). The CPU time of GHM test is
0.032 second.

CPU Timing: We compare GHM with two decompose-
and-test methods: SHH and Weierstrass passivity tests. In
Weierstrass test GUPTRI [3] is used for system decompo-
sition. For fairness, in all decompose-and-test routines the
proper parts are tested by Hamiltonian method. In GHM
and traditional Hamiltonian method, the threshold method
is adopted to eliminate the numerical noise. Since LMI costs
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Figure 8: CPU times of different DS passivity tests

O(n6) computations and can only handle DSs with order
below 100 on our PC, it is not experimentally compared in
this paper. Experiments are performed on some randomly
generated minimal MIMO DSs with order from 50 to 800.
CPU times of GHM, SHH and Weierstrass passivity tests are
plotted in Fig. 8. The experimental data show that GHM
is (about 2 times) faster than SHH. The additional cost of
SHH is mainly from system decomposition. It is further ob-
served that GHM and SHH are both faster than Weierstrass
test, which coincides with the results in [15].

Some remarks are in order.
1) Compared with the frequency-dependent sweeping tech-

niques, GHM can detect passivity violation regions with a
higher accuracy. Therefore, GHM is a more reliable tool for
DS passivity verification and compensation of VLSI models.

2) Decompose-and-test flows involve some unstable steps,
e.g., system decomposition and transformation. Further,
Weierstrass and SHH tests require the DS to be minimal.
GHM tests DS passivity without this restrictive assump-
tion, and it also avoids the expensive system decomposition,
so GHM flow is more flexible, numerically stable and faster.

3) In GHM test, the matrix pencil (J0, K0) can be directly
constructed from system matrices in an explicit way. Com-
pared with its regular counterpart, traditional Hamiltonian
method, GHM enjoys much wider application areas.

5. CONCLUSION
A generalized Hamiltonian method (GHM) has been pro-

posed for the first time, for admittance/impedance DS pas-
sivity test. The most significant advantage of GHM is the
ability of accurately detecting passivity violation regions, by
finding the crossover frequencies without system decomposi-
tions. Thanks to the proposed ImPT and equivalent model
conversion, GHM can flexibly deal with general DSs encoun-
tered in macromodeling and model order reduction, without
the restriction on system index, or the requirement of mini-
mal realization or nonsingular D+DT . Numerical examples
have demonstrated that GHM enjoys a higher accuracy than
frequency sweeping, and faster computation than LMI test,
SHH and Weierstrass assessments.
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