35 research outputs found

    Mass Balances of a Drained and a Rewetted Peatland: on Former Losses and Recent Gains

    Get PDF
    Drained peatlands are important sources of greenhouse gases and are rewetted to curb these emissions. We study one drained and one rewetted fen in terms of losses—and, after rewetting—gains of organic matter (OM), carbon (C), and peat thickness. We determined bulk density (BD) and ash/OM (and C/OM) ratios for 0.5 cm thick contiguous slices from peat monoliths to calculate losses. Whereas one site has lost 28.5 kg OM m−2 corresponding to annual emissions of ~10 t CO2 ha−1 a−1 over 50 years of effective drainage, the other site has lost 102 kg OM m−2, corresponding to an annual loss of ~30 t CO2 ha−1 a−1 for 30 years of intensive drainage and 6 t CO2 ha−1 a−1 during ~225 years of weak drainage before that. Height losses ranged from 43 to 162 cm. In the 20 years after rewetting, 2.12 kg C m−2 was accumulated, equaling an average annual uptake of ~0.4 kg CO2 m−2 a−1. The results indicate that rewetting can lead to carbon accumulation in fens. This sink function is only small compared with the high emissions that are avoided through rewetting

    Klimaschutz durch Schilfanbau

    Get PDF
    Die Art der Nutzung von Mooren ist in hohem Maße klimarelevant. Je nach Bewirtschaftungsweise kommt es entweder zur Emission von klimarelevanten Gasen oder zur Aufnahme und Speicherung von Kohlenstoffdioxid. Durch standortangepasste Biomasseproduktion kann ein Beitrag zum Klimaschutz geleistet werden

    The unexpected long period of elevated CH4 emissions from an inundated fen meadow ended only with the occurrence of cattail (Typha latifolia)

    Get PDF
    Drainage and agricultural use transform natural peatlands from a net carbon (C) sink to a net C source. Rewetting of peatlands, despite of high methane (CH4) emissions, holds the potential to mitigate climate change by greatly reducing CO2 emissions. However, the time span for this transition is unknown because most studies are limited to a few years. Especially, nonpermanent open water areas often created after rewetting, are highly productive. Here, we present 14 consecutive years of CH4 flux measurements following rewetting of a formerly long‐term drained peatland in the Peene valley. Measurements were made at two rewetted sites (non‐inundated vs. inundated) using manual chambers. During the study period, significant differences in measured CH4 emissions occurred. In general, these differences overlapped with stages of ecosystem transition from a cultivated grassland to a polytrophic lake dominated by emergent helophytes, but could also be additionally explained by other variables. This transition started with a rapid vegetation shift from dying cultivated grasses to open water floating and submerged hydrophytes and significantly increased CH4 emissions. Since 2008, helophytes have gradually spread from the shoreline into the open water area, especially in drier years. This process was periodically delayed by exceptional inundation and eventually resulted in the inundated site being covered by emergent helophytes. While the period between 2009 and 2015 showed exceptionally high CH4 emissions, these decreased significantly after cattail and other emergent helophytes became dominant at the inundated site. Therefore, CH4 emissions declined only after 10 years of transition following rewetting, potentially reaching a new steady state. Overall, this study highlights the importance of an integrative approach to understand the shallow lakes CH4 biogeochemistry, encompassing the entire area with its mosaic of different vegetation forms. This should be ideally done through a study design including proper measurement site allocation as well as long‐term measurements.Leibniz Centre for Agricultural Landscape Research (ZALF)Peer Reviewe

    Long-Term Rewetting of Three Formerly Drained Peatlands Drives Congruent Compositional Changes in Pro- and Eukaryotic Soil Microbiomes through Environmental Filtering

    Get PDF
    Drained peatlands are significant sources of the greenhouse gas (GHG) carbon dioxide.Rewetting is a proven strategy used to protect carbon stocks; however, it can lead to increasedemissions of the potent GHG methane. The response to rewetting of soil microbiomes as drivers ofthese processes is poorly understood, as are the biotic and abiotic factors that control communitycomposition. We analyzed the pro- and eukaryotic microbiomes of three contrasting pairs ofminerotrophic fens subject to decade-long drainage and subsequent long-term rewetting. Abiotic soilproperties including moisture, dissolved organic matter, methane fluxes, and ecosystem respirationrates were also determined. The composition of the microbiomes was fen-type-specific, but allrewetted sites showed higher abundances of anaerobic taxa compared to drained sites. Based onmulti-variate statistics and network analyses, we identified soil moisture as a major driver ofcommunity composition. Furthermore, salinity drove the separation between coastal and freshwaterfen communities. Methanogens were more than 10-fold more abundant in rewetted than in drainedsites, while their abundance was lowest in the coastal fen, likely due to competition with sulfatereducers. The microbiome compositions were reflected in methane fluxes from the sites. Our resultsshed light on the factors that structure fen microbiomes via environmental filtering

    From Understanding to Sustainable Use of Peatlands: The WETSCAPES Approach

    Get PDF
    Of all terrestrial ecosystems, peatlands store carbon most effectively in long-term scales of millennia. However, many peatlands have been drained for peat extraction or agricultural use. This converts peatlands from sinks to sources of carbon, causing approx. 5% of the anthropogenic greenhouse effect and additional negative effects on other ecosystem services. Rewetting peatlands can mitigate climate change and may be combined with management in the form of paludiculture. Rewetted peatlands, however, do not equal their pristine ancestors and their ecological functioning is not understood. This holds true especially for groundwater-fed fens. Their functioning results from manifold interactions and can only be understood following an integrative approach of many relevant fields of science, which we merge in the interdisciplinary project WETSCAPES. Here, we address interactions among water transport and chemistry, primary production, peat formation, matter transformation and transport, microbial community, and greenhouse gas exchange using state of the art methods. We record data on six study sites spread across three common fen types (Alder forest, percolation fen, and coastal fen), each in drained and rewetted states. First results revealed that indicators reflecting more long-term effects like vegetation and soil chemistry showed a stronger differentiation between drained and rewetted states than variables with a more immediate reaction to environmental change, like greenhouse gas (GHG) emissions. Variations in microbial community composition explained differences in soil chemical data as well as vegetation composition and GHG exchange. We show the importance of developing an integrative understanding of managed fen peatlands and their ecosystem functioning.

    The ethics of ‘Trials within Cohorts’ (TwiCs): 2nd international symposium - London, UK. 7-8 November 2016

    Get PDF
    On 7-8 th November 2016, 60 people with an interest in the ‘ Trials within Cohorts ’ (TwiCs) approach for randomised controlled trial design met in London. The purpose of this 2 nd TwiCs international symposium was to share perspectives and experiences on ethical aspects of the TwiCs design, discuss how TwiCs relate to the current ethical frame- work, provide a forum in which to discuss and debate ethical issues and identify future directions for conceptual and empirical research. The symposium was supported by the Wellcome Trust and the NIHR CLAHRC Yorkshire and Humber and organised by members of the TwiCs network led by Clare Relton and attended by people from the UK, the Netherlands, Norway, Canada and USA. The two-day sympo- sium enabled an international group to meet and share experiences of the TwiCs design (also known as the ‘ cohort multiple RCT design ’ ), and to discuss plans for future research. Over the two days, invited plenary talks were interspersed by discussions, posters and mini pre- sentations from bioethicists, triallists and health research regulators. Key findings of the symposium were: (1) It is possible to make a compelling case to ethics committees that TwiCs designs are ap- propriate and ethical; (2) The importance of wider considerations around the ethics of inefficient trial designs; and (3) some questions about the ethical requirements for content and timing of informed consent for a study using the TwiCs design need to be decided on a case-by-case basis

    Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

    Get PDF
    Non peer reviewe

    Self-regulation and self-organisation of raised bogs

    No full text
    Summary Raised bogs are raised above the regional ground water level and only fed by rain. To be able to be ‘high yet wet’, they have developed intricate self-regulation mechanisms. The most important of these mechanisms in Sphagnum raised bogs is the acrotelm. This upper layer of peat and vegetation shows a distinct gradient from large pores at the top to small ones at the bottom. When the water table drops, water can only flow through small pores and run-off is effectively reduced. Still, the acrotelm has high storativity, which restricts water table fluctuations to this layer. The acrotelm presents a compromise between small pore space to minimise run-off and large pore space to maximise storativity. These two ‘tasks’ of the acrotelm can also be split in horizontal space. The dry hummocks on the surface of a raised bog have much lower transmissivity and storativity than the wet hollows. These two surface elements can be organised in strikingly regular patterns of elongated strings of hummocks and so-called flarks of hollows arranged perpendicular to the slope. The origin of regular string-flark patterns was studied in chapter 2. In a simple, heuristic, spatially explicit simulation model, each cell in a square grid is randomly declared either a hummock or a hollow. The grid is on a slope and water is allowed to flow from each cell to its four neighbouring cells until water tables stabilise. Then, every cells changes state based on its water table: if the water table is low, the cell will more likely be a hummock, if it is high a hollow. If the parameter settings are right, this procedure will result in regular striping patters. Chapter 2 was the first study to search the parameter space for settings that result in patterning. Systematic analysis showed that the parameter space in which patterns develop is sharply delineated, indicating positive feedback mechanisms. Once a pattern develops, water tables in the model diverge: the flarks become wetter and the strings become drier. The hummock and hollow cells have combined into higher order units, the strings and flarks, that emerge as more effective in regulating water flow. Applying the same model for the first time to the dome shape of a raised bog (capther 3), pattern formation appeared to occur on three organisational levels. On the lowest nanotope level, we find strings and flarks, again combined in a string-flark complex, but this complex occurs alongside an all hummock rand and a wet, featureless central plateau. These three mire sites constitute the second, microtope level. On the third, mesotope level we can distinguish different types of bog domes that are defined by different combinations of mire sites. Classical literature on peatland classification used the same approach to classify bog domes, but also other and larger peatland areas. Our modelling shows that the mire sites actually exist as functional units in a self-organising bog and that they are not mere human classification constructs. To test our ideas on self-regulation and -organisation as well as the modelling results, we studied a patterned raised bog in Tierra del Fuego in terms of its plant cover, its water and its peat (chapter 4). The studied bog is almost completely covered by Sphagnum magellanicum. In northern peatlands the different niches from high and dry hummock to low and wet hollow are filled by different species of Sphagnum, each with their specific growth form. In the studied bog, all niches from dry to wet are occupied by Spagnum magellanicum, showing a wide range in growth form. Yet, we found it has only limited genetic diversity that is not linked to these niches and growth forms. Detailed measurements were made along a 498 m long transect crossing the bog, including water table measurements (every metre), vegetation relevĂ©s (2 × 2 m), hydraulic conductivity just below the water table (n = 246) and hydraulic conductivity in 11 depth profiles to a depth of 2 m (n = 291); the degree of humification of the corresponding peat was assessed in conjunction with the hydraulic conductivity measurements (n = 537). Sphagnum magellanicum moss samples were collected every 2 m along this transect and genotyped (n = 242). In addition, along short, 26 m long transects crossing strings and flarks water table and hydraulic conductivity just below the water table were measured every metre. Sphagnum growth forms were assessed and the vegetation of the entire bog was mapped in 10 × 10 m relevĂ©s (n = 3322). The simulation model was applied to a generalised form of the bog. There was an almost perfect match between plant cover and water tables. As expected, hydraulic conductivity just below the water table was about 7 times lower in the dry than in the wet measurement spots. These observations are valid on the low level of the nanotope: hummocks and hollows or dry and wet spots in general. Other observations only made sense on higher organisational levels like the microtope. For example, the hydraulic conductivity profiles of the string-flark complex show a gentler gradient than those of the plateau and the rand. The peat in the string-flark complex originates on this level of organisation and combines characteristic of both its dry and wet constituents. On the mesotope level, the simulation model produced a good match with the patterns on the actual dome. We analysed the abundant data on different organisational levels ranging from small single plants to the large mire system of fens and domes of which the studied dome is part. We looked for commonalities and discrepancies to help us better understand how the close link between plants, water and peat functions in reality. The results of all measurements were integrated with information from literature and discussed in the framework of a self-regulating and -organising raised bog. The field measurements considerably sharpened existing theoretical considerations. We identified nineteen hydrological feedback mechanisms. We found that the various mechanisms overlap both in space and time, which means there is redundancy in the self-regulation capacity of the system. Raised bogs, when in a natural state, are among the most resilient ecosystems known; resilience that is provided by feedbacks and back-up systems to these feedbacks. We used our ideas and insights on self-regulation in Sphagnum raised bogs to look for similar patterns and responses in tropical domed peat swamps (chapter 5). We know that in Sphagnum raised bogs the tasks of the acrotelm can be split in horizontal space. When we looked at undisturbed tropical peat swamps with this new search image, we recognised how hummocks of root material and litter and particularly buttress roots regulate run-off and storage of water. We could identify several additional hydrological feedback loops that mirror the mechanisms found in Sphagnum raised bogs. This thesis considerably advances our understanding of raised bogs as self-organising systems. The patterns and processes they display on multiple levels can be seen as a form of ecosystem diversity that exists independent of species and genetic diversity.Zusammenfassung Hochmoore erheben sich ĂŒber dem regionalen Grundwasserspiegel und werden nur durch Regen gespeist. Um "hoch und doch nass" sein zu können, haben sie komplizierte Selbstregulationsmechanismen entwickelt. Der wichtigste dieser Mechanismen in Sphagnum-Hochmooren ist der Akrotelm. Diese oberste Schicht aus Torf und Vegetation zeigt ein deutliches, vertikales GefĂ€lle von großen Poren, oben, zu kleinen Poren, unten. Wenn der Wasserstand sinkt, kann das Wasser nur noch durch kleine Poren fließen und der Abfluss wird wirksam reduziert. Dennoch hat der Akrotelm eine hohe SpeicherkapazitĂ€t, was die Schwankungen des Wasserspiegels auf diese Schicht beschrĂ€nkt. Der Akrotelm stellt einen Kompromiss zwischen kleinem Porenraum zur Minimierung des Abflusses und großem Porenraum zur Maximierung der SpeicherkapazitĂ€t dar. Diese beiden "Aufgaben" des Akrotelm können auch im horizontalen Raum verteilt sein. Die trockenen Bulten auf der OberflĂ€che eines Hochmoors haben eine viel geringere DurchlĂ€ssigkeit und SpeicherkapazitĂ€t als die nassen Schlenken. Diese beiden OberflĂ€chenelemente können in auffallend regelmĂ€ĂŸigen Mustern aus langgestreckten und senkrecht zum Hang angeordneten Bulten und Schlenken organisiert sein. Der Ursprung regelmĂ€ĂŸiger Bult-Schlenken-Muster wurde in Kapitel 2 untersucht. In einem einfachen, heuristischen, rĂ€umlich expliziten Simulationsmodell wird jede Zelle in einem quadratischen Gitter zufĂ€llig entweder Bult oder Schlenke. Das Gitter befindet sich an einem Hang, und Wasser kann von jeder Zelle zu den vier benachbarten Zellen fließen, bis sich der Wasserstand in den Zellen stabilisiert. Dann Ă€ndert jede Zelle ihren Zustand auf der Grundlage ihres Wasserstandes: Wenn der Wasserstand niedrig ist, wird die Zelle eher zum Bult, wenn er hoch ist, zur Schlenke. Wenn die Parametereinstellungen stimmen, werden so regelmĂ€ĂŸige Streifenmuster entstehen. Kapitel 2 war die erste Studie, die den vorgegebenen Parameterraum nach Einstellungen durchsuchte, die zu solchen Mustern fĂŒhren. Die systematische Analyse zeigte, dass der Parameterraum, in dem sich Muster entwickeln, scharf abgegrenzt ist, was auf positive RĂŒckkopplungsmechanismen hinweist. Sobald sich ein Muster entwickelt, divergieren die Grundwasserspiegel im Modell: die Schlenken werden feuchter und die Bulte werden trockener. Die Bulte und Schlenken haben sich zu Einheiten höherer Ordnung, den StrĂ€ngen und Flarken, zusammengeschlossen, die sich bei der Regulierung des Wasserflusses als wirksamer erweisen. Als dasselbe Modell zum ersten Mal auf die Uhrglasform eines Hochmoores angewendet wurde (Kapitel 3), zeigte es sich, dass die Musterbildung dabei auf drei Organisationsebenen erfolgt. Auf der untersten Nanotopebene finden wir StrĂ€nge und Flarke, die wiederum in einem Strang-Flark-Komplex kombiniert sind, aber dieser Komplex befindet sich zwischen einem „nur Bult“-Rand und einem nassen, unorganisiertem Zentralplateau. Diese drei Moorstandorte bilden die zweite, die Mikrotopebene. Auf der dritten, der Mesotopebene, können verschiedene Moortypen unterschieden werden, die durch verschiedene Kombinationen von Moorstandorten definiert sind. In der klassischen Literatur zur Moorklassifikation wurde der gleiche Ansatz verwendet, um Hochmoore, aber auch andere Moore und grĂ¶ĂŸere Moorgebiete zu klassifizieren. Unsere Modellierung zeigt, dass Moorstandorte tatsĂ€chlich als funktionelle Einheiten in einem selbstorganisierenden Moor existieren und dass sie nicht nur menschliche Klassifikationskonstrukte sind. Um unsere Ideen zur Selbstregulation und -organisation sowie die Ergebnisse der Modellierung zu testen, untersuchten wir ein gemustertes Hochmoor in Feuerland hinsichtlich seiner Pflanzendecke, seines Wassers und seines Torfes (Kapitel 4). Das untersuchte Moor ist fast vollstĂ€ndig vom Torfmoos-Art, Sphagnum magellanicum, bedeckt. In den nördlichen Mooren werden die verschiedenen Nischen, vom aufragenden und trockenen Bult bis zur niedrig liegenden und feuchten Schlenke, von verschiedenen Sphagnum-Arten besetzt, jede mit ihrer spezifischen Wuchsform. Im untersuchten Moor sind alle Nischen von trocken bis nass von Spagnum magellanicum besetzt. Die Art weist hier eine große Bandbreite an Wuchsformen auf. Die von uns festgestellte ohnehin geringe genetische Vielfalt steht nicht mit diesen Nischen und Wuchsformen in Zusammenhang. Detaillierte Messungen wurden entlang eines 498 m langen, das Moor durchquerenden Transektes durchgefĂŒhrt. Es erfolgten Vegetationsaufnahmen (2 × 2 m) und Messungen des Wasserstands (jeder Meter), der hydraulischen LeitfĂ€higkeit knapp unterhalb des Wasserstandes (n = 246) und der hydraulischen LeitfĂ€higkeit in 11 Tiefenprofilen bis zu einer Tiefe von 2 m (n = 291); der Zersetzungsgrad des entsprechenden Torfes wurde in Verbindung mit den hydraulischen LeitfĂ€higkeitsmessungen beurteilt (n = 537). Entlang dieses Transektes wurden alle 2 m Sphagnum magellanicum-Proben entnommen und genotypisiert (n = 242). DarĂŒber hinaus wurden entlang kurzer, 26 m langer Transekte, die StrĂ€nge und Flarke kreuzen, der Wasserstand und die hydraulische LeitfĂ€higkeit knapp unterhalb des Wasserstandes jeden Meter gemessen. Sphagnum-Wuchsformen wurden gekennzeichnet und die gesamte Vegetation des Moores in 10 × 10 m Aufnahmen kartiert (n = 3322). Das Simulationsmodell wurde auf eine generalisierte Form des Moores angewendet. Die Messungen ergaben eine fast perfekte Übereinstimmung zwischen Pflanzendecke und Wasserstand. Wie erwartet, war die hydraulische LeitfĂ€higkeit knapp unterhalb des Wasserstandes an den trockenen Standorten etwa 7-mal niedriger als an den nassen. Diese Beobachtungen sind auf dem niedrigen Niveau des Nanotops gĂŒltig: Bulten und Schlenken oder trockene und nasse Stellen im Allgemeinen. Andere Beobachtungen machten nur auf höheren Organisationsebenen wie dem Mikrotop Sinn. Zum Beispiel zeigen die Profile der hydraulischen LeitfĂ€higkeit des Strang-Flark-Komplexes einen sanfteren Gradienten als die der HochflĂ€che und des Randes. Der Torf im Strang-Flark-Komplex hat seinen Ursprung auf dieser Organisationsebene und vereint charakteristische Merkmale sowohl seiner trockenen als auch seiner nassen Bestandteile. Auf der Mesotop-Ebene ergab das Simulationsmodell eine gute Übereinstimmung mit den Mustern im Moor. Wir analysierten die reichlich vorhandenen Daten auf verschiedenen Organisationsebenen, von kleinen Einzelpflanzen bis hin zum großen Moorsystem aus Nieder- und Hochmooren, zu dem das untersuchte Moor gehört. Wir suchten nach Gemeinsamkeiten und Diskrepanzen, um besser zu verstehen, wie die enge Verbindung zwischen Pflanzen, Wasser und Torf in der RealitĂ€t funktioniert. Die Ergebnisse aller Messungen wurden mit Informationen aus der Literatur integriert und in Bezug auf ein sich selbst regulierenden und -organisierenden Hochmoors diskutiert. Durch die Feldmessungen wurden bestehende theoretische Überlegungen erheblich geschĂ€rft. Wir identifizierten neunzehn hydrologische RĂŒckkopplungsmechanismen. Wir stellten fest, dass sich die verschiedenen Mechanismen sowohl rĂ€umlich als auch zeitlich ĂŒberlappen, was bedeutet, dass es eine Redundanz in der SelbstregulationskapazitĂ€t des Systems gibt. Hochmoore in natĂŒrlichem Zustand gehören zu den widerstandsfĂ€higsten Ökosystemen der Welt; eine WiderstandsfĂ€higkeit, die auf RĂŒckkopplungen und Back-up-Systeme fĂŒr diese RĂŒckkopplungen beruht. Wir nutzten unsere Ideen und Erkenntnisse ĂŒber die Selbstregulation in Sphagnum-Hochmooren, um nach Ă€hnlichen Mustern und Reaktionen in tropischen MoorsumpfwĂ€ldern zu suchen (Kapitel 5). Wir wissen, dass in Sphagnum-Hochmooren die Aufgaben des Akrotelms im horizontalen Raum verteilt werden können. Als wir mit diesem neuen Suchbild ungestörte tropische MoorsumpfwĂ€lder betrachteten, erkannten wir, wie Bulten aus Wurzelmaterial und Streu und insbesondere Brettwurzeln den Abfluss und die Speicherung von Wasser regulieren. Wir konnten mehrere zusĂ€tzliche hydrologische RĂŒckkopplungsschleifen identifizieren, die den in Sphagnum-Hochmooren gefundenen Mechanismen entsprechen. Diese Dissertation bringt unser VerstĂ€ndnis von Hochmooren als selbstorganisierende Systeme erheblich voran. Die Muster und Prozesse, die sie auf mehreren Ebenen zeigen, können als eine Form der ÖkosystemdiversitĂ€t verstanden werden, die unabhĂ€ngig von der Arten- und genetischen DiversitĂ€t existiert
    corecore