39 research outputs found

    MetaNetter 2:A Cytoscape plugin for ab initio network analysis and metabolite feature classification

    Get PDF
    Metabolomics frequently relies on the use of high resolution mass spectrometry data. Classification and filtering of this data remain a challenging task due to the plethora of complex mass spectral artefacts, chemical noise, adducts and fragmentation that occur during ionisation and analysis. Additionally, the relationships between detected compounds can provide a wealth of information about the nature of the samples and the biochemistry that gave rise to them. We present a biochemical networking tool: MetaNetter 2 that is based on the original MetaNetter, a Cytoscape plugin that creates ab initio networks. The new version supports two major improvements: the generation of adduct networks and the creation of tables that map adduct or transformation patterns across multiple samples, providing a readout of compound relationships. We have applied this tool to the analysis of adduct patterns in the same sample separated under two different chromatographies, allowing inferences to be made about the effect of different buffer conditions on adduct detection, and the application of the chemical transformation analysis to both a single fragmentation analysis and an all-ions fragmentation dataset. Finally, we present an analysis of a dataset derived from anaerobic and aerobic growth of the organism Staphylococcus aureus demonstrating the utility of the tool for biological analysis

    Graph-based analysis of the metabolic exchanges between two co-resident intracellular symbionts, baumannia cicadellinicola and sulcia muelleri with their insect host, homalodisca coagulata

    Get PDF
    International audienceEndosymbiotic bacteria from different species can live inside cells of the same eukaryotic organism. Metabolic exchanges occur between host and bacteria but also between different endocytobionts. Since a complete genome annotation is available for both, we built the metabolic network of two endosymbiotic bacteria, Sulcia muelleri and Baumannia cicadellinicola, that live inside specific cells of the sharpshooter Homalodisca coagulata and studied the metabolic exchanges involving transfers of carbon atoms between the three. We automatically determined the set of metabolites potentially exogenously acquired (seeds) for both metabolic networks. We show that the number of seeds needed by both bacteria in the carbon metabolism is extremely reduced. Moreover, only three seeds are common to both metabolic networks, indicating that the complementarity of the two metabolisms is not only manifested in the metabolic capabilities of each bacterium, but also by their different use of the same environment. Furthermore, our results show that the carbon metabolism of S. muelleri may be completely independent of the metabolic network of B. cicadellinicola. On the contrary, the carbon metabolism of the latter appears dependent on the metabolism of S. muelleri, at least for two essential amino acids, threonine and lysine. Next, in order to define which subsets of seeds (precursor sets) are sufficient to produce the metabolites involved in a symbiotic function, we used a graph-based method, PITUFO, that we recently developed. Our results highly refine our knowledge about the complementarity between the metabolisms of the two bacteria and their host. We thus indicate seeds that appear obligatory in the synthesis of metabolites are involved in the symbiotic function. Our results suggest both B. cicadellinicola and S. muelleri may be completely independent of the metabolites provided by the co-resident endocytobiont to produce the carbon backbone of the metabolites provided to the symbiotic system (., thr and lys are only exploited by B. cicadellinicola to produce its proteins)

    Use of reconstituted metabolic networks to assist in metabolomic data visualization and mining

    Get PDF
    Metabolomics experiments seldom achieve their aim of comprehensively covering the entire metabolome. However, important information can be gleaned even from sparse datasets, which can be facilitated by placing the results within the context of known metabolic networks. Here we present a method that allows the automatic assignment of identified metabolites to positions within known metabolic networks, and, furthermore, allows automated extraction of sub-networks of biological significance. This latter feature is possible by use of a gap-filling algorithm. The utility of the algorithm in reconstructing and mining of metabolomics data is shown on two independent datasets generated with LC–MS LTQ-Orbitrap mass spectrometry. Biologically relevant metabolic sub-networks were extracted from both datasets. Moreover, a number of metabolites, whose presence eluded automatic selection within mass spectra, could be identified retrospectively by virtue of their inferred presence through gap filling

    Deciphering the connectivity structure of biological networks using MixNet

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As biological networks often show complex topological features, mathematical methods are required to extract meaningful information. Clustering methods are useful in this setting, as they allow the summary of the network's topology into a small number of relevant classes. Different strategies are possible for clustering, and in this article we focus on a model-based strategy that aims at clustering nodes based on their connectivity profiles.</p> <p>Results</p> <p>We present MixNet, the first publicly available computer software that analyzes biological networks using mixture models. We apply this method to various networks such as the <it>E. coli </it>transcriptional regulatory network, the macaque cortex network, a foodweb network and the <it>Buchnera aphidicola </it>metabolic network. This method is also compared with other approaches such as module identification or hierarchical clustering.</p> <p>Conclusion</p> <p>We show how MixNet can be used to extract meaningful biological information, and to give a summary of the networks topology that highlights important biological features. This approach is powerful as MixNet is adaptive to the network under study, and finds structural information without any a priori on the structure that is investigated. This makes MixNet a very powerful tool to summarize and decipher the connectivity structure of biological networks.</p

    Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks

    Get PDF
    International audienceIncreasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to suggest relevant reactions that explain the metabolic capacity of a biological system

    Genome Sequence of the Pea Aphid Acyrthosiphon pisum

    Get PDF
    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems

    A Turke turn'd Quaker: conversion from Islam to radical dissent in early modern England

    Get PDF
    The study of the relationship between the anglophone and Islamic worlds in the seventeenth century has been the subject of increas- ing interest in recent years, and much attention has been given to the cultural anxiety surrounding “Turning Turke”, conversion from Christianity to Islam, especially by English captives on the Barbary coast. Conversion in the other direction has attracted far less scrutiny, not least because it appears to have been far less com- mon. Conversion from Islam to any form of radical dissent has attracted no scholarship whatsoever, probably because it has been assumed to be non-existent. However, the case of Bartholomew Cole provides evidence that such conversions did take place, and examining the life of this “Turke turn’d Quaker” provides an insight into the dynamics of cross-cultural conversion of an exceptional kind

    From correlation to causation: analysis of metabolomics data using systems biology approaches

    Get PDF
    corecore