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A B S T R A C T

Metabolomics frequently relies on the use of high resolution mass spectrometry data. Classification and filtering
of this data remain a challenging task due to the plethora of complex mass spectral artefacts, chemical noise,
adducts and fragmentation that occur during ionisation and analysis. Additionally, the relationships between
detected compounds can provide a wealth of information about the nature of the samples and the biochemistry
that gave rise to them.

We present a biochemical networking tool: MetaNetter 2 that is based on the original MetaNetter, a Cytoscape
plugin that creates ab initio networks. The new version supports two major improvements: the generation of
adduct networks and the creation of tables that map adduct or transformation patterns across multiple samples,
providing a readout of compound relationships.

We have applied this tool to the analysis of adduct patterns in the same sample separated under two different
chromatographies, allowing inferences to be made about the effect of different buffer conditions on adduct
detection, and the application of the chemical transformation analysis to both a single fragmentation analysis
and an all-ions fragmentation dataset.

Finally, we present an analysis of a dataset derived from anaerobic and aerobic growth of the organism
Staphylococcus aureus demonstrating the utility of the tool for biological analysis.

1. Introduction

Metabolomics is rapidly becoming a standard tool for ‘omics’ re-
search. The application of high-resolution mass spectrometry systems
such as the Orbitrap [1] and high resolution Q-ToFs [2] allow the
generation of rich datasets with accurate mass information that allows
substantial inference on the metabolite composition of a mixture to be
obtained.

In complex mixtures, features detected using high resolution MS are
often interpreted independently. These features are nevertheless related
to each other since they may be involved in the same biochemical re-
actions (one being the substrate and the other the product). They also
may be technologically connected due to ionisation modes (e.g. frag-
ments, adducts). When annotating, it is important to take into account
this information since it can provide valuable clues on the molecular
nature of features. A common way to elucidate adducts and fragments
consists in clustering peaks related to the same original compound [3].
By taking biochemistry into account, it is possible to exploit the

constraints implied by the metabolic network (the union of all bio-
chemical reactions which can occur in a metabolic network) [4]. To
develop this network topology it is first necessary to establish a corre-
spondence (mapping) between features and metabolites in the network.
The overlap between features and metabolites in the network, however
is far from satisfying, meaning that not all the features can be mapped
in these networks. One of the reasons is that metabolic networks are
inferred from genomic information and common knowledge on meta-
bolism which can be incomplete. The other reason is that some meta-
bolites like lipids are represented in the network by class compounds
(e.g. “a sphingolipid”).

To analyse all features in a network perspective, Breitling et al. [5]
proposed to build “ab initio” networks based on mass differences. For
each pair of features in the network, if the mass difference between
them is equal (up to few ppm) to the mass difference of a biochemical
reaction, then these two features can be connected. Following this
work, we proposed software (a Cytoscape plugin) called MetaNetter [6]
allowing this network reconstruction to be performed.
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The MetaNetter plugin for Cytoscape 2 provided the capability to
perform ab initio network prediction and was in the top 50 downloaded
apps. Cytoscape is a powerful software package for displaying and
manipulating networks. The original MetaNetter relied on a configur-
able list of potential chemical transforms. When provided with a list of
accurate masses and a mass tolerance to take the inherent noise af-
fecting mass information into account, MetaNetter produces a graph
specifying the individual masses as nodes in the network, where pre-
dicted transformations are depicted as edges as described in the original
paper. This first release of the plugin is not compatible with the new
version of Cytoscape (3.0). Moreover it only took into account the
biochemical relationships between features and not adducts. This last
functionality is important for metabolite annotation as will be shown in
this article.

The new version has been substantially rewritten to adhere to the
model provided by the latest version of Cytoscape (3.0). An adduct
matching tool has been provided alongside the transformations method,
allowing annotation of links between nodes that potentially derive from
non-proton adducts. Additionally, retention time restriction has been
added, allowing matches (predominantly for adduct matching) to be
only allowed within a user-definable time window.

The original version of MetaNetter has also been successfully used
to map features across multiple samples, allowing the chemical trans-
formations in different states and under different experimental condi-
tions to be observed, for example analysing the chemical relationships
within dissolved organic matter from samples at the ocean surface
compared to the deep ocean [7]. This new version also computes fre-
quencies of each mass difference and adducts at a given threshold,
generating a table which can highlight the overrepresentation of par-
ticular transformations, allowing this type of analysis to be performed
rapidly and easily.

2. Methods and materials

2.1. Software

The MetaNetter 2 plugin was written in Java 1.8 using the MAVEN
framework for compilation. MetaNetter 2 is an OSGI module compliant
with the Cytoscape 3.0 application. MetaNetter 2 is available in the
Cytoscape App Store.

2.2. Samples

5 ul of foetal calf serum was extracted using 200 uL ice cold
chloroform/methanol/water 1:3:1. The resulting mixture was vortexed
for 30 s followed by centrifugation for 5 min at 13,000g.

Standards mixes were prepared as described as in [8].
A clinical strain of S. aureus, 5817-q14, LHSKBClinical [9] was

cultured overnight on Brain Heart Infusion (BHI) agar plates (Oxoid
Limited, Basingstoke, UK) in a humidified static incubator at 37 °C. For
the preparation of sub-cultures, single colonies were taken and in-
oculated into BHI broth media (Oxoid) in 1,5 mL reaction tubes (Ep-
pendorff). Aliquots (1 mL) of these liquid cultures were then incubated
overnight at 37 °C in a shaking incubator with 180 rpm to ensure a
stationary growth phase.These were used for the subsequent prepara-
tion of biofilm and planktonic cell cultures. The planktonic cell cultures
were grown in a shaking incubator with 180 rpm and 37 °C under
aerobic and anaerobic conditions, the biofilm samples on the other
hand were grown under aerobic conditions in a static incubator at
37 °C.

Planktonic cell and biofilm cell extracts were obtained following the
planktonic and biofilm extraction protocols described in Ref. [10].

2.3. LC–MS methodology

10 uL of each cell extract was injected onto an UltiMate 3000 RSLC
system (Thermo, UK) and separated using a 4 mm× 150 mm ZIC-
pHILIC column (for high pH adduct analysis and fragmentation ana-
lysis) or a 4 mm× 150 mm ZIC-HILIC column (for low pH adduct
analysis). All gradients and solvents were identical (A: water, B: acet-
onitrile) save for 20 mM ammonium carbonate, used as an ion pair in
buffer A for the pHILIC analysis, and 0.1% formic acid added to buffer A
and 0.08% formic acid added to buffer B in the HILIC analysis.
Gradients started from 20% A, rising to 80% after 15 min with a step to
95% A for 3 min, followed by 6 min equilibration time.

3. Results

Similar to MetaNetter, MetaNetter 2 requires an input file in text
format with a list of masses. For retention time matching a column
containing these times for each peak must be supplied. For correlation
sorting or visual mapping of the nodes by abundance, additional col-
umns may be provided headed with a sample label and containing
numerical values for abundances.

Fig. 1. a and b show the adduct pattern for a peak at 174.1111 (centre), corresponding to arginine. Fig. 1a is visually formatted by mass, with red coloured and larger nodes denoting
greater masses than blue small nodes. Fig. 1b is visually mapped by retention time, demonstrating that all peaks mapped elute at the same time, towards the end of the run (denoted by the
purple colour of the nodes). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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Datasets used in this example were derived from bovine serum ex-
tracts (used as inter-batch quality control) and a standards mix used
primarily for improved annotation [8].

A new addition to the capabilities of MetaNetter is the annotation of
adducts in a dataset. This works in a similar manner to the chemical
transformations described in the original paper, but is also capable of
taking into account di- and trimers of the original molecule, decorated
with a variety of adducts, as well as multi-charge adducts. Display of
the networks is configurable: the ‘visual mapping’ tab allows the colour
and size of nodes to be mapped to either the mass of the compound
(blue and small nodes are mapped to low masses, and red, large nodes
mapped to high masses), or to the intensity of a mass/node pair in a
given sample, with blue being low intensity and red being high.
Additionally, both adduct and transformation edges are labelled with
the adduct or transformation mapped, and furthermore transformations
can be colour coded by type. Furthermore, the matching algorithm can
be restricted to search only a specific retention time window for mat-
ches. For example adduct matches can be restricted to peaks occurring
within a 10 s window.

Fig. 1a and b shows the adduct pattern for a peak at 174.1111,
corresponding to arginine, from a Leishmania dataset [11]. Fig. 1a is
visually formatted by mass, with red coloured and larger nodes being
larger than blue small nodes. Fig. 1b is visually mapped by retention
time, demonstrating that all peaks mapped elute at the same time, to-
wards the end of the run (denoted by the red colour of the nodes).

In this example, bovine serum extracts were analysed in positive
mode ionisation under acidic (pH 3.0) and basic (ph 9.0) conditions,
using a ZIC-HILIC (Merck Sequant, Sweden) or ZIC-pHILIC (Merck
Sequant, Sweden) column buffered with formic acid or ammonium
carbonate respectively. Adduct pattern networks (see Fig. 2) were de-
rived from each dataset and a table showing the number of detected
adducts in each sample was generated using the Sample Match Table
module (Table S1).

Overall, positive ionisation is favoured by a low pH, and conse-
quently the proportion of adducts detected in HILIC is higher than those
detected in pHILIC. This is demonstrated in Table S1. The most marked
increases in number of detected adducts were those including formate,
which was an additive in the HILIC separation but not in the pHILIC.
Due to the addition of an ammonium salt in the high-pH pHILIC

separation it was expected that more ammonium adducts would be
detected, but this is not the case, with the majority detected in the
HILIC. It is expected that the effect of any increase in adduct formation
is suppressed by the overall effect of high pH on positive mode ioni-
sation.

Fig. 3. Transformation network combining an all ions fragmentation with the precursor
masses from the same sample and applying a time window restriction of 10 s. Note the
clusters of interlinked features, potentially fragmentation graphs that can aid in meta-
bolite annotation. Note the row of ‘orphan’ peaks below the interlinked networks – these
are due to peaks that are not linked to any other by a common chemical transformation.

Fig. 2. Two ‘base peaks’ and the adduct networks associated with them under a) acidic and b) basic conditions with edges created between nodes with an intensity of over 100,000 counts.
Note that the 512 m/z peak is significantly higher intensity denoted by a larger sized node under acidic conditions than under basic, although the adduct network in both cases is of
greater intensity than the threshold.
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4. Transformations applied to all-ions fragmentation

Transformation networks were available in the original version of
MetaNetter. The new version provides the same functionality but also
provides the ability (via the sample match table module) to map types
of transformation to particular samples, based on a given threshold, or
to determine the average ratio of transformed to untransformed mole-
cules. This allows rapid profiling of the types of transformation detected

across multiple samples and may be useful in identification of enzyme
functions or the presence of particular chemical modifiers in different
samples (see Tables S2 and 1 ). One situation where the utility of the
technique is likely to be highly helpful is the annotation of ‘all-ions’
fragmentation data. All-ions fragmentation is the application of colli-
sion energy to a sample without isolation of a specific ion first. Usually
all ions fragmentation is interleaved with a standard MS scan so that
molecular ions can be detected. Most implementations of this technique
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Fig. 4. Transformation network from a single selected MSMS spectrum – fragmentation of a 180.09 peak. While several orphan fragments are present, a large cluster of clearly chemically
related peaks, linked to the base peak in the spectrum are visible along with four additional peak group clusters.

Table 1
Transformation table at an intensity threshold of 6 (Log10 intensity) of Staphylococcus cells under aerobic (Aer) and anaerobic (An) conditions. There is a significant (P value < 0.01)
drop in transformation ratios in anaerobic (An) samples for these transformations, denoted by the predominantly green (low) levels of all An samples other than the outlier An_3. (For
interpretation of the references to colour in this table legend, the reader is referred to the web version of this article.)

K.E.V. Burgess et al. Journal of Chromatography B 1071 (2017) 68–74

71



use correlation analysis to match retention times and peak shapes from
precursor scans to fragments in the MSMS scan. MetaNetter’s trans-
formation mapping capability can be used to create networks of inter-
related fragments and precursors from MS scans and MSMS scans (see
Fig. 3), and the table of transformations allows detection of the types of
fragment commonly produced compared to those in the precursor scans
(see Table S2). Retention time restriction is used to ensure transfor-
mations are only mapped to fragments eluting at the same time. Note,
for example, that H2O loss and CO loss are extremely frequent in the
fragmentation data.

Individual networks generated from peak lists of selected ions can,
of course, be mapped as well, and the data produced is highly useful for
annotation. In the example provided in Fig. 4, the transformation net-
work associated with selected fragmentation of a peak with an m/z ratio
of 180.09 is shown, generated from a data-dependant acquisition ex-
periment. The precursor mass is directly linked to a phosphate group
loss, while in a second cluster, the base peak (84.0443) is connected to a
peak at 98.0599 that is then connected to many other fragments with a
variety of chemical transformations. This type of analysis has potential
applications in situations where multiple peaks are within a mass
spectrometer’s isolation window, contaminating a fragment spectrum,
and potentially leading to multiple transformation networks, such as
the one described in Fig. 4.

5. Analysis of anaerobically and aerobically grown Staphylococcus
aureus

To demonstrate the application to a biological sample, we applied
the MetaNetter 2 app to a study of the pathogenic, Gram-positive or-
ganism Staphylococcus aureus grown under aerobic and anaerobic

conditions. While not a substitute for a statistically driven untargeted
analysis, MetaNetter 2 provides a visual way of looking at properties of
the dataset that can provide insights into bulk properties. For example,
Fig. 5 shows maps of the predicted lipids, connected via hydroxylation
or chain length transformations. It is possible to see the interrelation-
ships between detected compounds visually, as well as provide a visual
guide to their relative quantitation. An example of this is given in Fig. 6,
where the selected transformations are phosphate, methionine, sul-
phate, diphosphate glucose-N-phosphate and glyoxalate. It is easy to
pick out differences from the aerobically grown samples than the
anaerobic samples using the table generation function (shown in
Table 1), which can produce a table of the average ratio of trans-
formed/untransformed features. In this case the P-values for a decrease
in sulphate, methionine, inorganic phosphate and glucose N-phosphate
transformations under anaerobic conditions are significant (P < 0.01),
while glyoxalate transformations are more prevalent (P < 0.01).

6. Discussion

Several other methods exist for graph presentation of mass spec-
trometry data. Software such as Pathos [12] and MassTrix [13] map
detected masses on to KEGG pathways. Others like MetExplore [14] can
use other databases than KEGG like genome scale networks provided in
SBML formats. Nevertheless, both approaches rely only on metabolites
belonging to the network and thus don't cover all the features generated
in MS experiments. MetScape also allows mapping metabolomics data
to these databases for Human (KEGG and EHMN) and add the ability to
add correlation edges when semi-quantitative data are available. Other
tools like Global Natural Products Social Molecular Networking (GNPS)
[15] will generate molecular networks that can be loaded in Cytoscape.

Fig. 5. Transformation network focusing on hydroxylation and ethyl group extension. Note that the masses, annotated as lipids and fatty acids, organise into grid patterns linking
compounds related by H -> OH and addition or subtraction of C2H2. Nodes are colour and size coded by mass, and it is possible to see the gradual shift from smaller to larger features
across the networks.
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These networks are quite useful for identification purposes since they
will connect similar MS/MS spectra. This approach is different from the
one implemented in MetExplore2 [14] since this method is based on
mass differences.

Mummichog is the implementation of an approach aiming at per-
forming metabolomics functional analysis by including features that are
not necessarily identified. Mass difference is used to take into account
adducts and confirm module or pathways enrichment. Nevertheless,
mass difference is not used to reconstruct potential ab initio cascades of
biochemical transformations in contrary to MetaNetter 2. One limita-
tion of MetaNetter 2 is that it presupposes the existence (at some in-
tensity) of an H+ or H− ion that other adducts can be related to. Recent
advances to adduct pattern matching [16] are a target for addition to
the MetaNetter software in future.

7. Conclusion

MetaNetter 2 provides a suite of expanded tools for de-novo net-
work generation that provide unique capabilities to those seeking to
annotate mass spectrometry data. The ability to map transformations
and adducts across multiple samples to annotate the types of transforms
and adducts detected on a per sample basis allows rapid screening for
chemical and physicochemical modifications.

The utility of MetaNetter 2 has been demonstrated in three usage
cases: evaluating the adduct patterns arising from different buffer
compositions, analysing the chemical transformations inherent in col-
lisionally induced fragmentation patterns, and an application to
Staphylococcus aureus grown under aerobic and anaerobic conditions.
These cases illustrate only three of the many applications that the
software can support and we envision novel applications in the field of
metabolite identification to be discovered as usage of the tool expands.
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