199 research outputs found

    Evaluation of Different Integrate Turf Management Programs to Reduce Microdochium Patch

    Get PDF
    To reduce the dependency of fungicides in treating turf grass diseases we investigated the use of biostimulants and colour pigments and their capacity to prevent the proliferation of microdochium and anthracnose on annual meadow grass (Poa annua). The study was conducted in two sites (Landvik, Norway and Bingley, United Kingdom) for two years (May 2020 – May 2022). The biostimulant Hicure could reduce the fungicidal use from three to two without loss of efficiency in treating the fungal diseases. The biostimulant also preserved the visual quality of the turf grasses when reducing the fungicidal treatment from three to two. The colour pigment Ryder in all treatments was effective at increasing the colour intensity of the turf grasses compared to the control. Additionally, the biostimulant treatments could treat anthracnose better than the fungicidal only treatment. The biostimulant Hicure and the colour pigment Ryder have potential for further research and development to reduce the use of fungicides while simultaneously preserving the pristine quality of turf grasses in golf greens.Evaluation of Different Integrate Turf Management Programs to Reduce Microdochium PatchpublishedVersio

    Salmon Protein Hydrolysate Potentiates the Growth Inhibitory Effect of Bicalutamide on Human Prostate Cancer Cell Lines LNCaP and PC3 by Modulating Iron Homeostasis

    Get PDF
    Prostate cancer is a common cause of cancer death in men. In advanced stages of prostate cancer, androgen deprivation therapy (ADT) is initiated. Despite ADT, prostate cancers invariably progress to become androgen independent. A growing body of evidence implicates iron dysmetabolism in prostate cancer progression. A bioactive peptide-rich salmon protein hydrolysate (SPH) has previously been demonstrated to modulate iron homeostatic mechanisms. In the present study, the anticancer effect of SPH and bicalutamide co-treatment on LNCaP and PC3 prostate cancer cell proliferation was investigated. Our results found that SPH potentiates the anti-proliferative effect of bicalutamide in a dose-dependent manner for both cell lines. In the presence of 160 µg/mL SPH, co-treatment with 1.0 µM bicalutamide decreased LNCaP cells’ relative colony survival from 25% (1.0 µM bicalutamide monotreatment) to 2% after culturing for 12 days. For PC3 cells, the relative colony survival diminished from 52% (10.0 µM bicalutamide) to 32% at an SPH concentration of 160 µg/mL. Gene expression profiling, employing quantitative real-time PCR, revealed that the inhibitory effects were related to significant FTH1 up-regulation with a concomitant TFRC down-regulation. In conclusion, our results provide in vitro evidence that SPH potentiates the growth inhibitory effect of bicalutamide on prostate cancer cells by modulating iron homeostasis mechanisms.publishedVersio

    På ville veier: en analyse og evaluering av mål- og resultatstyring i skatteetaten på merverdiavgiftsområdet

    Get PDF
    Prosjektoppgave i økonomiske og administrative fag, 2012Prosjektoppgaven omhandler mål- og resultatstyring i skatteetaten på merverdiavgiftsområdet. Mål- og resultatstyring er et grunnleggende styringsprinsipp i statlig forvaltning, og en vesentlig del av styringen består i målsetting og senere resultatoppfølging. Ved utformingen av resultatkravene til kontroll av merverdiavgiftsoppgaver, har det de seneste årene vært en sterk fokusering på økt antall kontroller. Prosjektoppgaven ser blant annet på hvordan resultatkravene som stilles til oppgavekontrollene i Skatt øst påvirker medarbeiderne i forhold til utplukk av kontrollobjekter og gjennomføring av kontrollene. Prosjektoppgaven ser også på utviklingen i oppnådde resultater og på påliteligheten i resultatrapportene som danner grunnlag for resultatrapporteringen. En viktig del av prosjektoppgavens vurderinger er om resultatkravene bygger opp under det som i sentrale styringsdokumenter er uttalt som overordnende mål for skatteetaten

    The spectroscopic binary system Gl 375. I. Orbital parameters and chromospheric activity

    Full text link
    We study the spectroscopic binary system Gl 375. We employ medium resolution echelle spectra obtained at the 2.15 m telescope at the Argentinian observatory CASLEO and photometric observations obtained from the ASAS database. We separate the composite spectra into those corresponding to both components. The separated spectra allow us to confirm that the spectral types of both components are similar (dMe3.5) and to obtain precise measurements of the orbital period (P = 1.87844 days), minimum masses (M_1 sin^3 i = 0.35 M_sun and M_2 sin^3 i =0.33 M_sun) and other orbital parameters. The photometric observations exhibit a sinusoidal variation with the same period as the orbital period. We interpret this as signs of active regions carried along with rotation in a tidally synchronized system, and study the evolution of the amplitude of the modulation in longer timescales. Together with the mean magnitude, the modulation exhibits a roughly cyclic variation with a period of around 800 days. This periodicity is also found in the flux of the Ca II K lines of both components, which seem to be in phase. The periodic changes in the three observables are interpreted as a sign of a stellar activity cycle. Both components appear to be in phase, which implies that they are magnetically connected. The measured cycle of approximately 2.2 years (800 days) is consistent with previous determinations of activity cycles in similar stars.Comment: 10 pages, including 11 figures and 3 tables. Accepted for publication in Astronomy & Astrophysic

    An Accuracy Assessment of Absolute Gravimetric Observations in Fennoscandia

    Get PDF
    We compare a suite of absolute gravimeters used to monitor the temporal changes of gravity at a number of sites in Fennoscandia. Direct comparisons are made from simultaneous observations at selected sites within and outside of the postglacial uplift region. We also compare results at sites visited by two instruments with some separation in time. We conclude from four years of data that gravity differences are obtained within an rms error of ± 3 Gal. The data reveal no systematic biases between the instruments, but occasional shifts from one year to another are noted. We consider that annual instrument comparisons are required to ensure data integrity in a regional observing program that extends over more than a decade

    New periodic variable stars coincident with ROSAT sources discovered using SuperWASP

    Get PDF
    We present optical lightcurves of 428 periodic variable stars coincident with ROSAT X-ray sources, detected using the first run of the SuperWASP photometric survey. Only 68 of these were previously recognised as periodic variables. A further 30 of these objects are previously known pre-main sequence stars, for which we detect a modulation period for the first time. Amongst the newly identified periodic variables, many appear to be close eclipsing binaries, their X-ray emission is presumably the result of RS CVn type behaviour. Others are probably BY Dra stars, pre-main sequence stars and other rapid rotators displaying enhanced coronal activity. A number of previously catalogued pulsating variables (RR Lyr stars and Cepheids) coincident with X-ray sources are also seen, but we show hat these are likely to be misclassifications. We identify four objects which are probable low mass eclipsing binary stars, based on their very red colour and light curve morphology

    Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA

    Get PDF
    In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC-Cdc6 ATPase to form a prereplicative complex (pre-RC) with an MCM2-7 double hexamer encircling DNA. Using purified components in the presence of ATP-γS, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the ORC-Cdc6 and Cdt1-MCM2-7 heteroheptamers called the OCCM. Cryo-EM studies of this 14-subunit complex reveal that the two separate heptameric complexes are engaged extensively, with the ORC-Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. The conformation of ORC-Cdc6 undergoes a concerted change into a right-handed spiral with helical symmetry that is identical to that of the DNA double helix. The resulting ORC-Cdc6 helicase loader shows a notable structural similarity to the replication factor C clamp loader, suggesting a conserved mechanism of action

    Sequence–structure relationships in RNA loops: establishing the basis for loop homology modeling

    Get PDF
    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence–structure relationships in loops. Loops differing by <25% in sequence identity fold into very similar structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts

    Author response

    Get PDF
    The DEAH-box helicase Prp43 is a key player in pre-mRNA splicing as well as the maturation of rRNAs. The exact modus operandi of Prp43 and of all other spliceosomal DEAH-box RNA helicases is still elusive. Here, we report crystal structures of Prp43 complexes in different functional states and the analysis of structure-based mutants providing insights into the unwinding and loading mechanism of RNAs. The Prp43ATP-analogRNA complex shows the localization of the RNA inside a tunnel formed by the two RecA-like and C-terminal domains. In the ATP-bound state this tunnel can be transformed into a groove prone for RNA binding by large rearrangements of the C-terminal domains. Several conformational changes between the ATP- and ADP-bound states explain the coupling of ATP hydrolysis to RNA translocation, mainly mediated by a ?-turn of the RecA1 domain containing the newly identified RF motif. This mechanism is clearly different to those of other RNA helicases

    Electrosurgery and Temperature Increase in Tissue With a Passive Metal Implant

    Get PDF
    Importance: During monopolar electrosurgery in patients, current paths can be influenced by metal implants, which can cause unintentional tissue heating in proximity to implants. Guidelines concerning electrosurgery and active implants such as pacemakers or implantable cardioverter defibrillators have been published, but most describe interference between electrosurgery and the active implant rather than the risk of unintended tissue heating. Tissue heating in proximity to implants during electrosurgery may cause an increased risk of patient injury.Objective: To determine the temperature of tissue close to metal implants during electrosurgery in an in-vitro model.Design, Setting, and Participants: Thirty tissue samples (15 with a metal implant placed in center, 15 controls without implant) were placed in an in vitro measurement chamber. Electrosurgery was applied at 5–60 W with the active electrode at three defined distances from the implant while temperatures at four defined distances from the implant were measured using fiber-optic sensors.Main Outcomes and Measures: Tissue temperature increase at the four tissue sites was determined for all power levels and each of the electrode-to-implant distances. Based on a linear mixed effects model analysis, the primary outcomes were the difference in temperature increase between implant and control tissue, and the estimated temperature increase per watt per minute.Results: Tissues with an implant had higher temperature increases than controls at all power levels after 1 min of applied electrosurgery (mean difference of 0.16°C at 5 W, 0.50°C at 15 W, 1.11°C at 30 W, and 2.22°C at 60 W, all with p &lt; 0.001). Temperature increase close to the implant was estimated to be 0.088°C/W/min (95% CI: 0.078–0.099°C/W/min; p &lt; 0.001). Temperature could increase to above 43°C after 1 min of 60 W. Active electrode position had no significant effect on temperature increases for tissues with implant (p = 0.6).Conclusions and Relevance: The temperature of tissue close to a metal implant increases with passing electrosurgery current. There is a significant risk of high tissue temperature when long activation times or high power levels are used
    corecore