1,768 research outputs found

    Muon spin rotation and relaxation in magnetic materials

    Full text link
    A review of the muon spin rotation and relaxation (Ό\muSR) studies on magnetic materials published from July 1993 is presented. It covers the investigation of magnetic phase diagrams, of spin dynamics and the analysis of the magnetic properties of superconductors. We have chosen to focus on selected experimental works in these different topics. In addition, a list of published works is provided.Comment: Review article, 59 pages, LaTeX with IoP macro

    Constraints on the Cosmic-Ray Density Gradient beyond the Solar Circle from Fermi gamma-ray Observations of the Third Galactic Quadrant

    Full text link
    We report an analysis of the interstellar Îł\gamma-ray emission in the third Galactic quadrant measured by the {Fermi} Large Area Telescope. The window encompassing the Galactic plane from longitude 210\arcdeg to 250\arcdeg has kinematically well-defined segments of the Local and the Perseus arms, suitable to study the cosmic-ray densities across the outer Galaxy. We measure no large gradient with Galactocentric distance of the Îł\gamma-ray emissivities per interstellar H atom over the regions sampled in this study. The gradient depends, however, on the optical depth correction applied to derive the \HI\ column densities. No significant variations are found in the interstellar spectra in the outer Galaxy, indicating similar shapes of the cosmic-ray spectrum up to the Perseus arm for particles with GeV to tens of GeV energies. The emissivity as a function of Galactocentric radius does not show a large enhancement in the spiral arms with respect to the interarm region. The measured emissivity gradient is flatter than expectations based on a cosmic-ray propagation model using the radial distribution of supernova remnants and uniform diffusion properties. In this context, observations require a larger halo size and/or a flatter CR source distribution than usually assumed. The molecular mass calibrating ratio, XCO=N(H2)/WCOX_{\rm CO} = N({\rm H_{2}})/W_{\rm CO}, is found to be (2.08±0.11)×1020cm−2(Kkms−1)−1(2.08 \pm 0.11) \times 10^{20} {\rm cm^{-2} (K km s^{-1})^{-1}} in the Local-arm clouds and is not significantly sensitive to the choice of \HI\ spin temperature. No significant variations are found for clouds in the interarm region.Comment: Corresponding authors: I. A. Grenier ([email protected]); T. Mizuno ([email protected]); L. Tibaldo ([email protected]) accepted for publication in Ap

    Fermi LAT Observation of Diffuse Gamma-Rays Produced Through Interactions between Local Interstellar Matter and High Energy Cosmic Rays

    Full text link
    Observations by the Large Area Telescope (LAT) on the \textit{Fermi} mission of diffuse Îł\gamma-rays in a mid-latitude region in the third quadrant (Galactic longitude ll from 200\arcdeg to 260\arcdeg and latitude ∣b∣| b | from 22\arcdeg to 60\arcdeg) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of Îł\gamma-ray point sources and inverse Compton scattering are estimated and subtracted. The residual Îł\gamma-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated Îł\gamma-ray emissivity is (1.63 \pm 0.05) \times 10^{-26} {\rm photons s^{-1} sr^{-1} H\mathchar`-atom^{-1}} and (0.66 \pm 0.02) \times 10^{-26} {\rm photons s^{-1} sr^{-1} H\mathchar`-atom^{-1}} above 100 MeV and above 300 MeV, respectively, with additional systematic error of ∌10\sim 10%. The differential emissivity in 100 MeV--10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within ∌10\sim 10%.Comment: accepted for publication in the Astrophysical Journal. Revised according to the author proof.(correction of typos and minor revisions

    Detection of the Small Magellanic Cloud in gamma-rays with Fermi/LAT

    Get PDF
    The flux of gamma rays with energies >100MeV is dominated by diffuse emission from CRs illuminating the ISM of our Galaxy through the processes of Bremsstrahlung, pion production and decay, and inverse-Compton scattering. The study of this diffuse emission provides insight into the origin and transport of CRs. We searched for gamma-ray emission from the SMC in order to derive constraints on the CR population and transport in an external system with properties different from the Milky Way. We analysed the first 17 months of continuous all-sky observations by the Large Area Telescope of the Fermi mission to determine the spatial distribution, flux and spectrum of the gamma-ray emission from the SMC. We also used past radio synchrotron observations of the SMC to study the population of CR electrons specifically. We obtained the first detection of the SMC in high-energy gamma rays, with an integrated >100MeV flux of (3.7 +/-0.7) x10e-8 ph/cm2/s, with additional systematic uncertainty of <16%. The emission is steady and from an extended source ~3{\deg} in size. It is not clearly correlated with the distribution of massive stars or neutral gas, nor with known pulsars or SNRs, but a certain correlation with supergiant shells is observed. The observed flux implies an upper limit on the average CR nuclei density in the SMC of ~15% of the value measured locally in the Milky Way. The population of high-energy pulsars of the SMC may account for a substantial fraction of the gamma-ray flux, which would make the inferred CR nuclei density even lower. The average density of CR electrons derived from radio synchrotron observations is consistent with the same reduction factor but the uncertainties are large. From our current knowledge of the SMC, such a low CR density does not seem to be due to a lower rate of CR injection and rather indicates a smaller CR confinement volume characteristic size.Comment: 14 pages, 6 figures, accepted for publication in A&

    Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions

    Full text link
    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) < 0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95% confidence level.Comment: 10 pages, 3 figure

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Search for CP Violation in the Decay Z -> b (b bar) g

    Full text link
    About three million hadronic decays of the Z collected by ALEPH in the years 1991-1994 are used to search for anomalous CP violation beyond the Standard Model in the decay Z -> b \bar{b} g. The study is performed by analyzing angular correlations between the two quarks and the gluon in three-jet events and by measuring the differential two-jet rate. No signal of CP violation is found. For the combinations of anomalous CP violating couplings, h^b=h^AbgVb−h^VbgAb{\hat{h}}_b = {\hat{h}}_{Ab}g_{Vb}-{\hat{h}}_{Vb}g_{Ab} and hb∗=h^Vb2+h^Ab2h^{\ast}_b = \sqrt{\hat{h}_{Vb}^{2}+\hat{h}_{Ab}^{2}}, limits of \hat{h}_b < 0.59and and h^{\ast}_{b} < 3.02$ are given at 95\% CL.Comment: 8 pages, 1 postscript figure, uses here.sty, epsfig.st

    Searches for Cosmic-Ray Electron Anisotropies with the Fermi Large Area Telescope

    Full text link
    The Large Area Telescope on board the \textit{Fermi} satellite (\textit{Fermi}-LAT) detected more than 1.6 million cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from ∌\sim 10 ∘^\circ up to 90∘^\circ, and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy's angular scale. The upper limits for a dipole anisotropy ranged from ∌0.5\sim0.5% to ∌10\sim10%.Comment: 16 pages, 10 figures, accepted for publication in Physical Review D - contact authors: M.N. Mazziotta and V. Vasileio

    Fermi Discovery of Gamma-Ray Emission from NGC 1275

    Get PDF
    We report the discovery of high-energy (E>100 MeV) gamma-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma ray Space Telescope. The positional center of the gamma-ray source is only ~3' away from the NGC 1275 nucleus, well within the 95% LAT error circle of ~5'.The spatial distribution of gamma-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F_gamma = (2.10+-0.23)x 10^{-7} ph (>100 MeV) cm^{-2} s^{-1} and Gamma = 2.17+-0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period.Previous EGRET observations gave an upper limit of F_gamma 100 MeV) cm^{-2} s^{-1} to the gamma-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.Comment: 27 pages, 7 figures, Accepted for publication in the Astrophysical Journa

    GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies

    Full text link
    The detection of diffuse radio emission associated with clusters of galaxies indicates populations of relativistic leptons infusing the intracluster medium. Those electrons and positrons are either injected into and accelerated directly in the intracluster medium, or produced as secondary pairs by cosmic-ray ions scattering on ambient protons. Radiation mechanisms involving the energetic leptons together with decay of neutral pions produced by hadronic interactions have the potential to produce abundant GeV photons. Here, we report on the search for GeV emission from clusters of galaxies using data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi) from August 2008 to February 2010. Thirty-three galaxy clusters have been selected according to their proximity and high mass, X-ray flux and temperature, and indications of non-thermal activity for this study. We report upper limits on the photon flux in the range 0.2-100 GeV towards a sample of observed clusters (typical values 1-5 x 10^-9 ph cm^-2 s^-1) considering both point-like and spatially resolved models for the high-energy emission, and discuss how these results constrain the characteristics of energetic leptons and hadrons, and magnetic fields in the intracluster medium. The volume-averaged relativistic-hadron-to-thermal energy density ratio is found to be < 5-10% in several clusters.Comment: 9 pages, 3 tables, 1 figure, accepted for publication in ApJ Letter
    • 

    corecore