141 research outputs found

    Soft, collinear and non-relativistic modes in radiative decays of very heavy quarkonium

    Get PDF
    We analyze the end-point region of the photon spectrum in semi-inclusive radiative decays of very heavy quarkonium (m alpha_s^2 >> Lambda_QCD). We discuss the interplay of the scales arising in the Soft-Collinear Effective Theory, m, m(1-z)^{1/2} and m(1-z) for z close to 1, with the scales of heavy quarkonium systems in the weak coupling regime, m, m alpha_s and m alpha_s^2. For 1-z \sim alpha_s^2 only collinear and (ultra)soft modes are seen to be relevant, but the recently discovered soft-collinear modes show up for 1-z << alpha_s^2. The S- and P-wave octet shape functions are calculated. When they are included in the analysis of the photon spectrum of the Upsilon (1S) system, the agreement with data in the end-point region becomes excellent. The NRQCD matrix elements and are also obtained.Comment: Revtex, 11 pages, 6 figures. Minor improvements and references added. Journal versio

    Hard Scattering Factorization from Effective Field Theory

    Get PDF
    In this paper we show how gauge symmetries in an effective theory can be used to simplify proofs of factorization formulae in highly energetic hadronic processes. We use the soft-collinear effective theory, generalized to deal with back-to-back jets of collinear particles. Our proofs do not depend on the choice of a particular gauge, and the formalism is applicable to both exclusive and inclusive factorization. As examples we treat the pi-gamma form factor (gamma gamma* -> pi^0), light meson form factors (gamma* M -> M), as well as deep inelastic scattering (e- p -> e- X), Drell-Yan (p pbar -> X l+ l-), and deeply virtual Compton scattering (gamma* p -> gamma(*) p).Comment: 35 pages, 4 figures, typos corrected, journal versio

    Second-order corrections to neutrino two-flavor oscillation parameters in the wave packet approach

    Full text link
    We report about an analytic study involving the {\em intermediate} wave packet formalism for quantifying the physically relevant information which appear in the neutrino two-flavor conversion formula and help us to obtain more precise limits and ranges for neutrino flavor oscillation. By following the sequence of analytic approximations where we assume a strictly peaked momentum distribution and consider the second-order corrections in a power series expansion of the energy, we point out a {\em residual} time-dependent phase which, coupled with the {\em spreading/slippage} effects, can subtly modify the neutrino oscillation parameters and limits. Such second-order effects are usually ignored in the relativistic wave packet treatment, but they present an evident dependence on the propagation regime so that some small modifications to the oscillation pattern, even in the ultra-relativistic limit, can be quantified. These modifications are implemented in the confront with the neutrino oscillation parameter range (mass-squared difference \Delta m^{\2} and the mixing-angle ξ\theta) where we assume the same wave packet parameters previously noticed in the literature in a kind of {\em toy model} for some reactor experiments. Generically speaking, our analysis parallels the recent experimental purposes which concern with higher precision parameter measurements. To summarize, we show that the effectiveness of a more accurate determination of \Delta m^{\2} and ξ\theta depends on the wave packet width aa and on the averaged propagating energy flux Eˉ\bar{E} which still correspond to open variables for some classes of experiments. \Comment: 25 pages, 5 figure

    The Gribov-Zwanziger action in the presence of the gauge invariant, nonlocal mass operator Tr∫d4xFΌΜ(D2)−1FΌΜTr \int d^4x F_{\mu\nu} (D^2)^{-1} F_{\mu\nu} in the Landau gauge

    Full text link
    We prove that the nonlocal gauge invariant mass dimension two operator FΌΜ(D2)−1FΌΜF_{\mu\nu} (D^2)^{-1} F_{\mu\nu} can be consistently added to the Gribov-Zwanziger action, which implements the restriction of the path integral's domain of integration to the first Gribov region when the Landau gauge is considered. We identify a local polynomial action and prove the renormalizability to all orders of perturbation theory by employing the algebraic renormalization formalism. Furthermore, we also pay attention to the breaking of the BRST invariance, and to the consequences that this has for the Slavnov-Taylor identity.Comment: 30 page

    An alternative electric-field spectrum for laser-driven atomic systems

    Get PDF
    We adopt an open systems perspective to calculate the power spectrum associated with the electric field generated by an atomic dipole moment undergoing resonant laser-driving. This spectrum has a similar triplet shape to the Mollow spectrum and contains a similar amount of information. This is surprising, since the Mollow triplet derives from the Glauber two-time correlation function, which represents the average energy-intensity of a superposition of waves taken at different times. In contrast, our spectrum derives from a correlation function defined in terms of single-time expectation values of the electric source-field. Although they are derived from very different correlation functions, both spectra reflect the quantum-mechanical level-structure of the atomic source

    A New Computational Fluid Dynamics Code I: Fyris Alpha

    Full text link
    A new hydrodynamics code aimed at astrophysical applications has been developed. The new code and algorithms are presented along with a comprehensive suite of test problems in one, two, and three dimensions. The new code is shown to be robust and accurate, equalling or improving upon a set of comparison codes. Fyris Alpha will be made freely available to the scientific community.Comment: 59 pages, 27 figures For associated code see http://www.mso.anu.edu.au/fyri

    Complimentary Narrative Commentaries of Statutory Accounts in the Annual Reports of UK Listed Companies

    Get PDF
    This paper, for the first time, classifies narrative information into complementary and supplementary. For the purpose of the paper, complementary narrative information is defined as that information which refers to specific numbers presented in the statutory accounts (profit and loss and balance sheet). Non-specific narrative information is classified as supplementary. Having made the distinction and provided reasons for such a distinction the study investigates the extent of complementary narrative commentaries on numbers from the statutory accounts. The study also investigates which company-specific characteristics are associated with the extent of complementary narrative commentaries. An index consisting of 46 items which must be reported in the statutory accounts was used to measure the extent of complementary narrative commentaries in the annual reports of 170 listed UK companies. the findings suggest that, on average, the companies comment on 3909% of the numbers appearing in their statutory accounts. using the Ordinary Least Squares (OLS) regression model, the results indicate that company size, gearing, profitability, liquidity ratio, the presence of exceptional items, and substantial institutional investment are significantly associated with the extent of complementary narrative commentaries. However, auditory type, directors' share ownership, and the proportion of non-executive directors are not significantly associated with the extent of complementary narrative commentaries. The research has important implications for accounting regulators, users of annual reports and future research into the usefulness narrative information provided in annual reports

    Environmental controls, morphodynamic processes, and ecogeomorphic interactions of barchan to parabolic dune transformations

    Get PDF
    The transformation of barchans into parabolic dunes has been observed in various dune systems around the world. Precise details of how environmental controls influence the dune transformation and stabilisation mechanism, however, remain poorly understood. A ‘horns-anchoring’ mechanism and a ‘nebkhas-initiation’ mechanism have previously been proposed and selected environmental controls on the transformation have been explored by some modelling efforts, but the morphodynamic processes and eco-geomorphic interactions involved are unclear and comparison between different dune systems is challenging. This study extends a cellular automaton model, informed by empirical data from fieldwork and remote sensing, to fully explore how vegetation characteristics, boundary conditions, and wind regime influence the transformation process and the resulting dune morphologies. A ‘dynamic growth function’ is introduced for clump-like perennials to differentiate between growing and non-growing seasons and to simulate the development of young plants into mature plants over multiple years. Modelling results show that environmental parameters interact with each other in a complex manner to impact the transformation process. The study finds a fundamental power-law relation between a non-dimensional parameter group, so-called the ‘dune stabilising index’ (S⁎), and the normalised migration distance of the transforming dune, which can be used to reconstruct paleo-environmental conditions and monitor the impacts of changes in climate or land-use on a dune system. Four basic eco-geomorphic interaction zones are identified which bear different functionality in the barchan to parabolic dune transformation. The roles of different environmental controls in changing the eco-geomorphic interaction zones, transforming processes, and resulting dune morphologies are also clarified

    Measurement of Pressure Dependent Fluorescence Yield of Air: Calibration Factor for UHECR Detectors

    Full text link
    In a test experiment at the Final Focus Test Beam of the Stanford Linear Accelerator Center, the fluorescence yield of 28.5 GeV electrons in air and nitrogen was measured. The measured photon yields between 300 and 400 nm at 1 atm and 29 deg C are Y(760 Torr, air) = 4.42 +/- 0.73 and Y(760 Torr, nitrogen) = 29.2 +/- 4.8 photons per electron per meter. Assuming that the fluorescence yield is proportional to the energy deposition of a charged particle traveling through air, good agreement with measurements at lower particle energies is observed.Comment: 22 pages, 14 figures, 2 tables, submitted to Astroparticle Physic

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    • 

    corecore