34 research outputs found
Using modal decompositions to explain the sudden expansion of the mixing layer in the wake of a groyne in a shallow flow
The sudden expansion of the mixing layer created in the wake of a single groyne is investigated using Particle Image Velocimetry (PIV). In the region of the sudden expansion a patch of high Reynolds shear stresses are observed. Using low-order representations, created from a Dynamic Mode Decomposition and a search criteria based on a Proper Orthogonal Decomposition, the spatio-temporal mechanism of the sudden expansion is investigated. The present study demonstrates the sudden expansion is created by the periodic merging of eddies. These eddies originate from the upstream separation and the tip of the groyne and merge with recirculating eddies created, downstream of the groyne, at the interface of the mixing layer and the lateral wall
Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory
The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data
The rapid atmospheric monitoring system of the Pierre Auger Observatory
The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or 'rapid') monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction
The Rapid Atmospheric Monitoring System of the Pierre Auger Observatory
The Pierre Auger Observatory is a facility built to detect air showers
produced by cosmic rays above 10^17 eV. During clear nights with a low
illuminated moon fraction, the UV fluorescence light produced by air showers is
recorded by optical telescopes at the Observatory. To correct the observations
for variations in atmospheric conditions, atmospheric monitoring is performed
at regular intervals ranging from several minutes (for cloud identification) to
several hours (for aerosol conditions) to several days (for vertical profiles
of temperature, pressure, and humidity). In 2009, the monitoring program was
upgraded to allow for additional targeted measurements of atmospheric
conditions shortly after the detection of air showers of special interest,
e.g., showers produced by very high-energy cosmic rays or showers with atypical
longitudinal profiles. The former events are of particular importance for the
determination of the energy scale of the Observatory, and the latter are
characteristic of unusual air shower physics or exotic primary particle types.
The purpose of targeted (or "rapid") monitoring is to improve the resolution of
the atmospheric measurements for such events. In this paper, we report on the
implementation of the rapid monitoring program and its current status. The
rapid monitoring data have been analyzed and applied to the reconstruction of
air showers of high interest, and indicate that the air fluorescence
measurements affected by clouds and aerosols are effectively corrected using
measurements from the regular atmospheric monitoring program. We find that the
rapid monitoring program has potential for supporting dedicated physics
analyses beyond the standard event reconstruction
Ultrahigh energy neutrinos at the pierre auger observatory
The observation of ultrahigh energy neutrinos (UHEs) has become a priority in experimental astroparticle physics. UHEs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ) or in the Earth crust (Earth-skimming ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHEs in the data collected with the ground array of the Pierre Auger Observatory.This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEs in the EeV range and above
Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)
Atmospheric conditions at the site of a cosmic ray observatory must be known
for reconstructing observed extensive air showers. The Global Data Assimilation
System (GDAS) is a global atmospheric model predicated on meteorological
measurements and numerical weather predictions. GDAS provides
altitude-dependent profiles of the main state variables of the atmosphere like
temperature, pressure, and humidity. The original data and their application to
the air shower reconstruction of the Pierre Auger Observatory are described. By
comparisons with radiosonde and weather station measurements obtained on-site
in Malarg\"ue and averaged monthly models, the utility of the GDAS data is
shown
Ultrahigh energy neutrinos at the Pierre Auger observatory
The observation of ultrahigh energy neutrinos (UHEνs) has become a priority in experimental astroparticle physics. UHEνs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν) or in the Earth crust (Earth-skimming ν), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHEνs in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEνs in the EeV range and above.P. Abreu ... K. B. Barber ... J. A. Bellido ... R. W. Clay ... M. J. Cooper ... B. R. Dawson ... T. A. Harrison ... A. E. Herve ... V. C. Holmes ... J. Sorokin ... P. Wahrlich ... B. J. Whelan ... et al
Formaldehyde-releasers: relationship to formaldehyde contact allergy. Formaldehyde-releasers in clothes: durable press chemical finishes. Part 1
This is one of a series of review articles on formaldehyde-releasers and their relationship to formaldehyde contact allergy and in this paper formaldehyde-releasers used as durable press chemical finishes (DPCF) in textiles are discussed. The literature on allergy to DPCF since 1980 is presented in two parts. Part 1 (this article) presents a short historical overview of the problems with formaldehyde in clothes and discusses the chemistry of durable press chemical finishes, legislation in various countries, and studies on the amount of formaldehyde present in clothes. In addition, the DPCF that have caused contact allergy are presented with CAS, synonyms, molecular formula, chemical structure, applications, and patch test studies. In the forthcoming part 2, the frequency of sensitization to DPCF, occupational contact sensitization, relevance of patch test reactions, and relationship to formaldehyde contact allergy will be reviewed, followed by a discussion of both parts of the article together