4 research outputs found

    Alien insects: Threats and implications for conservation of Galápagos Islands

    No full text
    Alien species are the principal threat to the conservation of the Galápagos Islands, but little is known about the status of nonindigenous Galápagos insects and their effects on the biota. Currently, 463 alien insect species have probably been introduced to the Galápagos, an increase of 186 unintentional species introductions since an inventory in 1998. Alien insects now constitute 23% of the total insect fauna. Six species are known to be invasive and a threat to the biota: two species of fire ant and two wasps, a scale insect, and an ectoparasitic dipteran. The ecological impacts of the remaining species are unknown, making the prioritization of action for conservation management difficult. Thus, a newly developed and simple scoring system is presented to predict their potential invasiveness based on trophic functional role, distribution in Galápagos, and history of invasiveness elsewhere. An additional 52 species are predicted to be highly invasive. The endemic flora is most at risk because the largest proportion (42%) of the introduced species is herbivores. Plant populations are threatened principally by vectors of plant disease and by phloem and leaf feeders. Introduced preda

    Host-specific associations affect the microbiome of Philornis downsi, an introduced parasite to the Galápagos Islands

    No full text
    The composition and diversity of bacteria forming the microbiome of parasitic organisms have implications for differential host pathogenicity and host–parasite co‐evolutionary interactions. The microbiome of pathogens can therefore have consequences that are relevant for managing disease prevalence and impact on affected hosts. Here, we investigate the microbiome of an invasive parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, where it poses extinction threat to Darwin's finches and other land birds. Larvae infest nests of Darwin's finches and consume blood and tissue of developing nestlings, and have severe mortality impacts. Using 16s rRNA sequencing data, we characterize the bacterial microbiota associated with P. downsi adults and larvae sourced from four finch host species, inhabiting two islands and representing two ecologically distinct groups. We show that larval and adult microbiomes are dominated by the phyla Proteobacteria and Firmicutes, which significantly differ between life stages in their distributions. Additionally, bacterial community structure significantly differed between larvae retrieved from strictly insectivorous warbler finches (Certhidea olivacea) and those parasitizing hosts with broader dietary preferences (ground and tree finches, Geospiza and Camarhynchus spp., respectively). Finally, we found no spatial effects on the larval microbiome, as larvae feeding on the same host (ground finches) harboured similar microbiomes across islands. Our results suggest that the microbiome of P. downsi changes during its development, according to dietary composition or nutritional needs, and is significantly affected by host‐related factors during the larval stage. Unravelling the ecological significance of bacteria for this parasite will contribute to the development of novel, effective control strategies

    Global rise in emerging alien species results from increased accessibility of new source pools

    No full text
    Our ability to predict the identity of future invasive alien species is largely based upon knowledge of prior invasion history. Emerging alien species-those never encountered as aliens before-therefore pose a significant challenge to biosecurity interventions worldwide. Understanding their temporal trends, origins, and the drivers of their spread is pivotal to improving prevention and risk assessment tools. Here, we use a database of 45,984 first records of 16,019 established alien species to investigate the temporal dynamics of occurrences of emerging alien species worldwide. Even after many centuries of invasions the rate of emergence of new alien species is still high: Onequarter of first records during 2000-2005 were of species that had not been previously recorded anywhere as alien, though with large variation across taxa. Model results show that the high proportion of emerging alien species cannot be solely explained by increases in well-known drivers such as the amount of imported commodities from historically important source regions. Instead, these dynamics reflect the incorporation of new regions into the pool of potential alien species, likely as a consequence of expanding trade networks and environmental change. This process compensates for the depletion of the historically important source species pool through successive invasions. We estimate that 1-16% of all species on Earth, depending on the taxonomic group, qualify as potential alien species. These results suggest that there remains a high proportion of emerging alien species we have yet to encounter, with future impacts that are difficult to predict. © 2018 National Academy of Sciences. All Rights Reserved

    Classical biological control for the protection of natural ecosystems

    Get PDF
    Of the 70 cases of classical biological control for the protection of nature found in our review, there were fewer projects against insect targets (21) than against invasive plants (49), in part, because many insect biological control projects were carried out against agricultural pests, while nearly all projects against plants targeted invasive plants in natural ecosystems. Of 21 insect projects, 81% (17) provided benefits to protection of biodiversity, while 48% (10) protected products harvested from natural systems, and 5% (1) preserved ecosystem services, with many projects contributing to more than one goal. In contrast, of the 49 projects against invasive plants, 98% (48) provided benefits to protection of biodiversity, while 47% (23) protected products, and 25% (12) preserved ecosystem services, again with many projects contributing to several goals. We classified projects into complete control (pest generally no longer important), partial control (control in some areas but not others), and ‘‘in progress,” for projects in development for which outcomes do not yet exist. For insects, of the 21 projects discussed, 62% (13) achieved complete control of the target pest, 19% (4) provided partial control, and 43% (9) are still in progress. By comparison, of the 49 invasive plant projects considered, 27% (13) achieved complete control, while 33% (16) provided partial control, and 49% (24) are still in progress. For both categories of pests, some projects’ success ratings were scored twice when results varied by region. We found approximately twice as many projects directed against invasive plants than insects and that protection of biodiversity was the most frequent benefit of both insect and plant projects. Ecosystem service protection was provided in the fewest cases by either insect or plant biological control agents, but was more likely to be provided by projects directed against invasive plants, likely because of the strong effects plants exert on landscapes. Rates of complete success appeared to be higher for insect than plant targets (62% vs 27%), perhaps because most often herbivores gradually weaken, rather than outright kill, their hosts, which is not the case for natural enemies directed against pest insects. For both insect and plant biological control, nearly half of all projects reviewed were listed as currently in progress, suggesting that the use of biological control for the protection of wildlands is currently very active
    corecore