178 research outputs found

    Silica in Protoplanetary Disks

    Full text link
    Mid-infrared spectra of a few T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope show prominent narrow emission features indicating silica (crystalline silicon dioxide). Silica is not a major constituent of the interstellar medium; therefore, any silica present in the circumstellar protoplanetary disks of TTS must be largely the result of processing of primitive dust material in the disks surrouding these stars. We model the silica emission features in our spectra using the opacities of various polymorphs of silica and their amorphous versions computed from earth-based laboratory measurements. This modeling indicates that the two polymorphs of silica, tridymite and cristobalite, which form at successively higher temperatures and low pressures, are the dominant forms of silica in the TTS of our sample. These high temperature, low pressure polymorphs of silica present in protoplanetary disks are consistent with a grain composed mostly of tridymite named Ada found in the cometary dust samples collected from the STARDUST mission to Comet 81P/Wild 2. The silica in these protoplanetary disks may arise from incongruent melting of enstatite or from incongruent melting of amorphous pyroxene, the latter being analogous to the former. The high temperatures of 1200K-1300K and rapid cooling required to crystallize tridymite or cristobalite set constraints on the mechanisms that could have formed the silica in these protoplanetary disks, suggestive of processing of these grains during the transient heating events hypothesized to create chondrules.Comment: 47 pages, 9 figures, to appear in the 1 January, 2009 issue of the Astrophysical Journa

    The effect of the regular solution model in the condensation of protoplanetary dust

    Full text link
    We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high temperature region (T > 1400 K) Ca-Al compounds dominate and the formation of corundum is sensitive to the pressure. The mid-temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3 . The chemistry of forsterite and enstatite are strictly related, and our simulations show a sequence of forsterite-enstatite-forsterite with decreasing temperature. In the low temperature regions (T < 600 K) a range of iron compounds and sulfides form. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model In particular, we find that the turning point in which forsterite replaces enstatite in the low temperature region is sensitive to the solution model. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model, and suggest that this model should provide a more realistic condensation sequence.Comment: MNRAS: Accepted 2011 February 16. Received 2011 February 14; in original form 2010 July 2

    Male Circumcision and HIV Prevention: Looking to the Future

    Get PDF
    Now that male circumcision has been shown to have a protective effect for men against HIV infection when engaging in vaginal intercourse with HIV-infected women, the research focus needs to shift towards the operational studies that can pave the way for effective implementation of circumcision programs. Behavioral research is needed to find out how people perceive the procedure and the barriers to and facilitators of uptake. It should also assess the risk of an increase in unsafe sex after circumcision. Social research must examine cultural perceptions of the practice, in Africa and beyond, including how likely uncircumcised communities are to access surgery and what messages are needed to persuade them. Advocates of male circumcision would benefit from research on how to influence health policy-makers, how best to communicate the benefits to the public, and how to design effective delivery models

    The origin of GEMS in IDPs as deduced from microstructural evolution of amorphous silicates with annealing

    Full text link
    We present laboratory studies of the micro-structural evolution of an amorphous ferro-magnesian silicate, of olivine composition, following thermal annealing under vacuum. Annealing under vacuum was performed at temperatures ranging from 870 to 1020 K. After annealing spheroidal metallic nano-particles (2-50 nm) are found within the silicate films. We interpret this microstructure in terms of a reduction of the initial amorphous silicate FeO component, because of the carbon-rich partial pressure in the furnace due to pumping mechanism. Annealing in a controlled oxygen-rich atmosphere confirms this interpretation. The observed microstructures closely resemble those of the GEMS (Glass with Embedded Metal and Sulphides) found in chondritic IDPs (Interplanetary Dust Particles). Since IDPs contain abundant carbonaceous matter, a solid-state reduction reaction may have occurred during heating in the hot inner regions of the proto-solar disc. Related to this, the presence of forsterite grains grown from the amorphous precursor material clearly demonstrates that condensation from gaseous species is not required to explain the occurrence of forsterite around young protostars and in comets. Forsterite grains in these environments can be formed directly in the solid phase by thermal annealing of amorphous ferro-magnesian silicates under reducing conditions.Comment: 4 pages, 2 figures. Accepted for publication A&A Letter to the Edito

    “I would rather be told than not know” - A qualitative study exploring parental views on identifying the future risk of childhood overweight and obesity during infancy

    Get PDF
    BACKGROUND: Risk assessment tools provide an opportunity to prevent childhood overweight and obesity through early identification and intervention to influence infant feeding practices. Engaging parents of infants is paramount for success however; the literature suggests there is uncertainty surrounding the use of such tools with concerns about stigmatisation, labelling and expressions of parental guilt. This study explores parents' views on identifying future risk of childhood overweight and obesity during infancy and communicating risk to parents. METHODS: Semi-structured qualitative interviews were conducted with 23 parents and inductive, interpretive and thematic analysis performed. RESULTS: Three main themes emerged from the data: 1) Identification of infant overweight and obesity risk. Parents were hesitant about health professionals identifying infant overweight as believed they would recognise this for themselves, in addition parents feared judgement from health professionals. Identification of future obesity risk during infancy was viewed positively however the use of a non-judgemental communication style was viewed as imperative. 2) Consequences of infant overweight. Parents expressed immediate anxieties about the impact of excess weight on infant ability to start walking. Parents were aware of the progressive nature of childhood obesity however, did not view overweight as a significant problem until the infant could walk as viewed this as a point when any excess weight would be lost due to increased energy expenditure. 3) Parental attributions of causality, responsibility, and control. Parents articulated a high level of personal responsibility for preventing and controlling overweight during infancy, which translated into self-blame. Parents attributed infant overweight to overfeeding however articulated a reluctance to modify infant feeding practices prior to weaning. CONCLUSION: This is the first study to explore the use of obesity risk tools in clinical practice, the findings suggest that identification, and communication of future overweight and obesity risk is acceptable to parents of infants. Despite this positive response, findings suggest that parents' acceptance to identification of risk and implementation of behaviour change is time specific. The apparent level of parental responsibility, fear of judgement and self-blame also highlights the importance of health professionals approach to personalised risk communication so feelings of self-blame are negated and stigmatisation avoided

    A 10 micron spectroscopic survey of Herbig Ae star disks: grain growth and crystallization

    Get PDF
    We present spectroscopic observations of a large sample of Herbig Ae stars in the 10 micrometer spectral region. We perform compositional fits of the spectra based on properties of homogeneous as well as inhomogeneous spherical particles, and derive the mineralogy and typical grain sizes of the dust responsible for the 10 Ό\mum emission. Several trends are reported that can constrain theoretical models of dust processing in these systems: i) none of the sources consists of fully pristine dust comparable to that found in the interstellar medium, ii) all sources with a high fraction of crystalline silicates are dominated by large grains, iii) the disks around more massive stars (M >~ 2.5 M_sun, L >~ 60 L_sun) have a higher fraction of crystalline silicates than those around lower mass stars, iv) in the subset of lower mass stars (M <~ 2.5 M_sun) there is no correlation between stellar parameters and the derived crystallinity of the dust. The correlation between the shape and strength of the 10 micron silicate feature reported by van Boekel et al. (2003) is reconfirmed with this larger sample. The evidence presented in this paper is combined with that of other studies to present a likely scenario of dust processing in Herbig Ae systems. We conclude that the present data favour a scenario in which the crystalline silicates are produced in the innermost regions of the disk, close to the star, and transported outward to the regions where they can be detected by means of 10 micron spectroscopy. Additionally, we conclude that the final crystallinity of these disks is reached very soon after active accretion has stopped.Comment: 22 pages, 14 figures, accepted for publication in A&A. Note: this submission was replaced on 26.04.2005: we used incorrect terminology in figure 6 and the discussion of this figure. The vertical axis label of figure 6 has been corrected and now reads "Normalized 11.3/9.8 Flux Ratio", in the discussion of this figure (section 4.2) "continuum subtracted" has been replaced by "normalized

    GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov Gerasimenko

    Get PDF
    Context. During the period between 15 September 2014 and 4 February 2015, the Rosetta spacecraft accomplished the circular orbit phase around the nucleus of comet 67P/Churyumov-Gerasimenko (67P). The Grain Impact Analyzer and Dust Accumulator (GIADA) onboard Rosetta monitored the 67P coma dust environment for the entire period. Aims. We aim to describe the dust spatial distribution in the coma of comet 67P by means of in situ measurements. We determine dynamical and physical properties of cometary dust particles to support the study of the production process and dust environment modification. Methods. We analyzed GIADA data with respect to the observation geometry and heliocentric distance to describe the coma dust spatial distribution of 67P, to monitor its activity, and to retrieve information on active areas present on its nucleus. We combined GIADA detection information with calibration activity to distinguish different types of particles that populate the coma of 67P: compact particles and fluffy porous aggregates. By means of particle dynamical parameters measured by GIADA, we studied the dust acceleration region. Results. GIADA was able to distinguish different types of particles populating the coma of 67P: compact particles and fluffy porous aggregates. Most of the compact particle detections occurred at latitudes and longitudes where the spacecraft was in view of the comet’s neck region of the nucleus, the so-called Hapi region. This resulted in an oscillation of the compact particle abundance with respect to the spacecraft position and a global increase as the comet moved from 3.36 to 2.43 AU heliocentric distance. The speed of these particles, having masses from 10-10 to 10-7 kg, ranged from 0.3 to 12.2 m s−1. The variation of particle mass and speed distribution with respect to the distance from the nucleus gave indications of the dust acceleration region. The influence of solar radiation pressure on micron and submicron particles was studied. The integrated dust mass flux collected from the Sun direction, that is, particles reflected by solar radiation pressure, was three times higher than the flux coming directly from the comet nucleus. The awakening 67P comet shows a strong dust flux anisotropy, confirming what was suggested by on-ground dust coma observations performed in 2008

    Selective Disparity of Ordinary Chondritic Precursors in Micrometeorite Flux

    Get PDF
    All known extraterrestrial dust (micrometeoroids) entering the Earth's atmosphere is anticipated to have a significant contribution from ordinary chondritic precursors, as seen in meteorites, but this is an apparent contradiction that needs to be addressed. Ordinary chondrites represent a minor contribution to the overall meteor influx compared to carbonaceous chondrites, which are largely dominated by CI and/or CM chondrites. However, the near-Earth asteroid population presents a scenario with sufficient scope for generation of dust-sized debris from ordinary chondritic sources. The bulk chemical composition of 3255 micrometeorites (MMs) collected from Antarctica and deep-sea sediments has shown Mg/Si largely dominated by carbonaceous chondrites, and less than 10% having ordinary chondritic precursors. The chemical ablation model is combined with different initial chondritic compositions (CI, CV, L, LL, H), and the results clearly indicate that high-density (≄2.8 g cm⁻³) precursors, such as CV and ordinary chondrites in the size range 100–700 ÎŒm and zenith angle 0°–70°, ablate at much faster rates and lose their identity even before reaching the Earth's surface and hence are under-represented in our collections. Moreover, their ability to survive as MMs remains grim for high-velocity micrometeoroids (>16 km s⁻Âč). The elemental ratio for CV and ordinary chondrites are also similar to each other irrespective of the difference in the initial chemical composition. In conclusion, MMs belonging to ordinary chondritic precursors' concentrations may not be insignificant in thermosphere, as they are found on Earth's surface
    • 

    corecore