888 research outputs found

    Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2

    Full text link
    Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fermi arcs arising from topological surface states [10, 11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20]. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion [21], which does not have counterpart in high energy physics due to the breaking of Lorentz invariance, can emerge as topologically-protected touching between electron and hole pockets. Here, we report direct spectroscopic evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 [22-24]. The topological surface states are confirmed by directly observing the surface states using bulk-and surface-sensitive angle-resolved photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI) pattern between the two putative Fermi arcs in scanning tunneling microscopy (STM). Our work establishes MoTe2 as the first experimental realization of type-II Weyl semimetal, and opens up new opportunities for probing novel phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.Comment: submitted on 01/29/2016. Nature Physics, in press. Spectroscopic evidence of the Fermi arcs from two complementary surface sensitive probes - ARPES and STS. A comparison of the calculated band structure for T_d and 1T' phase to identify the topological Fermi arcs in the T_d phase is also included in the supplementary informatio

    Prevalence of smoking and incidence of initiation in the Latin American adult population: the PLATINO study

    Get PDF
    Background: the PLATINO project was launched in 2002 in order to study the prevalence of chronic obstructive pulmonary disease (COPD) in Latin America. Because smoking is the main risk factor for COPD, detailed data on it were obtained. the aim of this paper was to evaluate the prevalence of smoking and incidence of initiation among middle-aged and older adults (40 years or older). Special emphasis was given to the association between smoking and schooling.Methods: PLATINO is a multicenter study comprising five cross-sectional population-based surveys of approximately 1,000 individuals per site in São Paulo (Brazil), Santiago (Chile), Mexico City (Mexico), Montevideo (Uruguay) and Caracas (Venezuela). the outcome variable was smoking status (never, former or current). Current smokers were those who reported to smoke within the previous 30 days. Former smokers were those who reported to quit smoking more than 30 days before the survey. Using information on year of birth and age of smoking onset and quitting, a retrospective cohort analysis was carried out. Smoking prevalence at each period was defined as the number of subjects who started to smoke during the period plus those who were already smokers at the beginning of the period, divided by the total number of subjects. Incidence of smoking initiation was calculated as the number of subjects who started to smoke during the period divided by the number of non-smokers at its beginning. the independent variables included were sex, age and schooling.Results: Non-response rates ranged from 11.1% to 26.8%. the prevalence of smoking ranged from 23.9% (95% CI 21.3; 26.6) in São Paulo to 38.5% (95% CI 35.7; 41.2) in Santiago. Males and middle-aged adults were more likely to smoke in all sites. After adjustment for age, schooling was not associated with smoking. Using retrospective cohort analysis, it was possible to detect that the highest prevalence of smoking is found between 20-29 years, while the highest incidence is found between 10-19 years. Age of smoking onset tended to decline over time among females.Conclusion: the prevalence of smoking varied considerably across sites, but was lower among countries with national anti-smoking campaigns.Univ Fed Pelotas, Pelotas, BrazilUniv Republica, Montevideo, UruguayInst Nacl Enfermedades Resp, Mexico City, DF, MexicoUniversidade Federal de São Paulo, São Paulo, BrazilPontificia Univ Catolica Chile, Santiago, ChileCent Univ Venezuela, Caracas, VenezuelaUniversidade Federal de São Paulo, São Paulo, BrazilWeb of Scienc

    The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura

    Get PDF
    Abstract We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both \u3b1- and \u3b2-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the \u3b2-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis

    Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2

    Get PDF
    Spatiotemporal bias in genome sampling can severely confound discrete trait phylogeographic inference. This has impeded our ability to accurately track the spread of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, despite the availability of unprecedented numbers of SARS-CoV-2 genomes. Here, we present an approach to integrate individual travel history data in Bayesian phylogeographic inference and apply it to the early spread of SARS-CoV-2. We demonstrate that including travel history data yields i) more realistic hypotheses of virus spread and ii) higher posterior predictive accuracy compared to including only sampling location. We further explore methods to ameliorate the impact of sampling bias by augmenting the phylogeographic analysis with lineages from undersampled locations. Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of travel history data, but also suggest alternative routes of virus migration that are plausible within the epidemiological context but are not apparent with current sampling efforts.status: publishe

    Semimetallic carbon allotrope with topological nodal line in mixed sp2sp^2-sp3sp^3 bonding networks

    Full text link
    Graphene is known as a two-dimensional Dirac semimetal, in which electron states are described by the Dirac equation of relativistic quantum mechanics. Three-dimensional analogues of graphene are characterized by Dirac points or lines in momentum space, which are protected by symmetry. Here, we report a novel 3D carbon allotrope belonging to a class of topological nodal line semimetals, discovered by using an evolutionary structure search method. The new carbon phase in monoclinic CC2/m/m space group, termed mm-C8C_8, consists of five-membered rings with sp3sp^3 bonding interconnected by sp2sp^2-bonded carbon networks. Enthalpy calculations reveal that mm-C8C_8 is more favorable over recently reported topological semimetallic carbon allotropes, and the dynamical stability of mm-C8C_8 is verified by phonon spectra and molecular dynamics simulations. Simulated x-ray diffraction spectra propose that mm-C8C_8 would be one of the unidentified carbon phases observed in detonation shoot. The analysis of electronic properties indicates that mm-C8C_8 exhibits the nodal line protected by both inversion and time-reversal symmetries in the absence of spin-orbit coupling and the surface band connecting the projected nodal points. Our results may help design new carbon allotropes with exotic electronic properties.Comment: 18 pages, 5 figure

    Evidence for a narrow |S|=1 baryon state at a mass of 1528 MeV in quasi-real photoproduction

    Get PDF
    Evidence for a narrow baryon state is found in quasi-real photoproduction on a deuterium target through the decay channel p K^0_S --> p pi^+ pi^-. A peak is observed in the p K^0_S invariant mass spectrum at 1528 +/- 2.6 (stat) +/-2.1 (syst) MeV. Depending on the background model,the naive statistical significance of the peak is 4--6 standard deviations and its width may be somewhat larger than the experimental resolution of sigma=4.3 -- 6.2 MeV. This state may be interpreted as the predicted S=+1 exotic Theta^{+}(uuddbar(s)) pentaquark baryon. No signal for an hypothetical Theta^{++} baryon was observed in the pK^+ invariant mass distribution. The absence of such a signal indicates that an isotensor Theta is excluded and an isovector Theta is unlikely.Comment: 8 pages, 4 figure

    Double hadron leptoproduction in the nuclear medium

    Full text link
    First measurement of double-hadron production in deep-inelastic scattering has been measured with the HERMES spectrometer at HERA using a 27.6 GeV positron beam with deuterium, nitrogen, krypton and xenon targets. The influence of the nuclear medium on the ratio of double-hadron to single-hadron yields has been investigated. Nuclear effects are clearly observed but with substantially smaller magnitude and reduced AA-dependence compared to previously measured single-hadron multiplicity ratios. The data are in fair agreement with models based on partonic or pre-hadronic energy loss, while they seem to rule out a pure absorptive treatment of the final state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388
    corecore