36 research outputs found

    Contrasted Saharan dust events in LNLC environments: impact on nutrient dynamics and primary production

    Get PDF
    The response of the phytoplanktonic community (primary production and algal biomass) to contrasted Saharan dust events (wet and dry deposition) was studied in the framework of the DUNE ("a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem") project. We simulated realistic dust deposition events (10 gm(-2)) into large mesocosms (52m(3)). Three distinct dust addition experiments were conducted in June 2008 (DUNE-1-P: simulation of a wet deposition; DUNE-1-Q: simulation of a dry deposition) and 2010 (DUNE-2-R1 and DUNE-2-R2: simulation of two successive wet depositions) in the northwestern oligotrophic Mediterranean Sea. No changes in primary production (PP) and chlorophyll a concentrations (Chl a) were observed after a dry deposition event, while a wet deposition event resulted in a rapid (24 h after dust addition), strong (up to 2.4-fold) and long (at least a week in duration) increase in PP and Chl a. We show that, in addition to being a source of dissolved inorganic phosphorus (DIP), simulated wet deposition events were also a significant source of nitrate (NO3-) (net increases up to +9.8 mu M NO3- at 0.1m in depth) to the nutrient-depleted surface waters, due to cloud processes and mixing with anthropogenic species such as HNO3. The dry deposition event was shown to be a negligible source of NO3-. By transiently increasing DIP and NO3- concentrations in N-P starved surface waters, wet deposition of Saharan dust was able to relieve the potential N or NP co-limitation of the phytoplanktonic activity. Due to the higher input of NO3- relative to DIP, and taking into account the stimulation of the biological activity, a wet deposition event resulted in a strong increase in the NO3-/DIP ratio, from initially less than 6, to over 150 at the end of the DUNE-2-R1 experiment, suggesting a switch from an initial N or NP co-limitation towards a severe P limitation. We also show that the contribution of new production to PP strongly increased after wet dust deposition events, from initially 15% to 60-70% 24 h after seeding, indicating a switch from a regenerated-production based system to a new-production based system. DUNE experiments show that wet and dry dust deposition events induce contrasting responses of the phytoplanktonic community due to differences in the atmospheric supply of bioavailable new nutrients. Our results from original mesocosm experiments demonstrate that atmospheric dust wet deposition greatly influences primary productivity and algal biomass in LNLC environments through changes in the nutrient stocks, and alters the NO3-/DIP ratio, leading to a switch in the nutrient limitation of the phytoplanktonic activity

    Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic

    Get PDF
    The role of iron in enhancing phytoplankton productivity in high nutrient, low chlorophyll oceanic regions was demonstrated first through iron-addition bioassay experiments1 and subsequently confirmed by large-scale iron fertilization experiments2. Iron supply has been hypothesized to limit nitrogen fixation and hence oceanic primary productivity on geological timescales3, providing an alternative to phosphorus as the ultimate limiting nutrient4. Oceanographic observations have been interpreted both to confirm and refute this hypothesis5, 6, but direct experimental evidence is lacking7. We conducted experiments to test this hypothesis during the Meteor 55 cruise to the tropical North Atlantic. This region is rich in diazotrophs8 and strongly impacted by Saharan dust input9. Here we show that community primary productivity was nitrogen-limited, and that nitrogen fixation was co-limited by iron and phosphorus. Saharan dust addition stimulated nitrogen fixation, presumably by supplying both iron and phosphorus10, 11. Our results support the hypothesis that aeolian mineral dust deposition promotes nitrogen fixation in the eastern tropical North Atlantic

    Rising nutrient-pulse frequency and high UVR strengthen microbial interactions

    Get PDF
    Solar radiation and nutrient pulses regulate the ecosystem’s functioning. However, little is known about how a greater frequency of pulsed nutrients under high ultraviolet radiation (UVR) levels, as expected in the near future, could alter the responses and interaction between primary producers and decomposers. In this report, we demonstrate through a mesocosm study in lake La Caldera (Spain) that a repeated (press) compared to a one-time (pulse) schedule under UVR prompted higher increases in primary (PP) than in bacterial production (BP) coupled with a replacement of photoautotrophs by mixotrophic nanoflagellates (MNFs). The mechanism underlying these amplified phytoplanktonic responses was a dual control by MNFs on bacteria through the excretion of organic carbon and an increased top-down control by bacterivory. We also show across a 6-year whole-lake study that the changes from photoautotrophs to MNFs were related mainly to the frequency of pulsed nutrients (e.g. desert dust inputs). Our results underscore how an improved understanding of the interaction between chronic and stochastic environmental factors is critical for predicting ongoing changes in ecosystem functioning and its responses to climatically driven changes.This study was supported by the Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional (FEDER) (CGL2011-23681 and CGL2015-67682-R to PC), Ministerio de Medio Ambiente, Rural, y Marino (PN2009/067 to PC) and Junta de Andalucía (Excelencia projects P09-RNM-5376 and P12-RNM-327 to PC and JMMS, respectively). M.J.C. was supported by the Spanish Government “Formación de Profesorado Universitario” PhD grant (FPU12/01243) and I.D.-G. by the Junta de Andalucía “Personal Investigador en Formación” PhD grant (FPI RNM-5376). This work is in partial fulfillment of the Ph. D. thesis of M.J.C

    Saharan input of phosphate to the oligotrophic water of the open westernMediterranean Sea

    No full text
    International audienc

    Increased intracellular concentrations of DMSP and DMSO in iron-limited oceanic phytoplankton Thalassiosira oceanica and Trichodesmium erythraeum

    No full text
    We investigated the link between iron (Fe) limitation and intracellular dimethylsulfoniopropionate (DMSP) concentration in two oceanic phytoplankton species, the diatom Thalassiosira oceanica and the diazotrophic cyanobacterium Trichodesmium erythraeum. Dimethylsulfoxide (DMSO) concentrations were also measured in Fe-replete and Fe-limited T. oceanica. Fe limitation decreased the growth rates of T. oceanica and T. erythraeum by 33-fold and 3.5-fold, respectively and increased intracellular DMSP (DMSPp) concentrations by 12-fold (from 2.8 to 33.7 mmol L-cell(-1)) and by 45-fold (from 0.05 to 2.27 mmol L-trichome(-1)), respectively. Intracellular dimethylsulfoxide (DMSOp) concentrations in T. oceanica increased by 5-fold under severe Fe limitation, from 0.78 mmol L-cell(-1) in Fe-replete cells to 3.86 mmol L-cell(-1). The increase in DMSPp and DMSOp under Fe limitation provides support for the role of these sulfur compounds as antioxidants. Under severe Fe limitation, the large increase in DMSPp : C and DMSP: chlorophyll a (Chl a) ratios for both T. oceanica (by 16- and 40-fold, respectively) and T. erythraeum (by 18- and 145-fold, respectively) places these species above the range of values generally attributed to diatoms and cyanophytes. Comparison of these values with in situ results, such as those from Fe fertilization experiments, suggests that the decrease in DMSPp : Chl a and DMSOp : Chl a that is generally observed with alleviation of Fe limitation may be partly related to decreases in DMSPp and DMSOp in individual species. The role of diatoms and diazotrophic cyanobacteria in the biogeochemical cycle of dimethylsulfide and associated sulfur compounds in Fe-limited oceanic environments should not be overlooked

    Ridame, C.: Quantification of the lithogenic carbon pump following a simulated dust-deposition event in large mesocosms

    No full text
    Abstract. Lithogenic particles, such as desert dust, have been postulated to influence particulate organic carbon (POC) export to the deep ocean by acting as mineral ballasts. However, an accurate understanding and quantification of the POC-dust association that occurs within the upper ocean is required in order to refine the "ballast hypothesis". In the framework of the DUNE (a DUst experiment in a lowNutrient, low-chlorophyll Ecosystem) project, two artificial seedings were performed seven days apart within large mesocosms. A suite of optical and biogeochemical measurements were used to quantify surface POC export following simulated dust events within a low-nutrient, low-chlorophyll ecosystem. The two successive seedings led to a 2.3-6.7-fold higher POC flux than the POC flux observed in controlled mesocosms. A simple linear regression analysis revealed that the lithogenic fluxes explained more than 85 % of the variance in POC fluxes. On the scale of a dust-deposition event, we estimated that 42-50 % of POC fluxes were strictly associated with lithogenic particles (through aggregation and most probably sorption processes). Lithogenic ballasting also likely impacted the remaining POC fraction which resulted from the fertilization effect. The observations support the "ballast hypothesis" and provide a quantitative estimation of the surface POC export abiotically triggered by dust deposition. In this work, we demonstrate that the strength of such a "lithogenic carbon pump" depends on the biogeochemical conditions of the water column at the time of deposition. Based on these observations, we suggest that this lithogenic carbon pump could represent a major component of the biological pump in oceanic areas subjected to intense atmospheric forcing
    corecore