228 research outputs found

    Which probes are most useful when undertaking cognitive interviews?

    Get PDF
    This paper reports the use of verbal probes in cognitive interviews (CIs) undertaken to test the usefulness, validity and reliability of survey questions. Through examining the use of probes by three interviewers undertaking interviews as part the piloting of a cross-national crime survey, we examine which of the various types of probes used in CIs produce the most useful information. Other influences on interview quality are examined, including differences between interviewers and respondents themselves. The analyses rely on multi-level modelling and suggest that anticipated, emergent and conditional probes provide the most useful data. Furthermore, age, gender and educational levels appear to have no bearing on the quality of the data generated

    A homopolar disc dynamo experiment with liquid metal contacts

    Get PDF
    We present experimental results of a homopolar disc dynamo constructed at CICATA-Quer\'etaro in Mexico. The device consists of a flat, multi-arm spiral coil which is placed above a fast-spinning metal disc and connected to the latter by sliding liquid-metal electrical contacts. Theoretically, self-excitation of the magnetic field is expected at the critical magnetic Reynolds number Rm~45, which corresponds to a critical rotation rate of about 10 Hz. We measured the magnetic field above the disc and the voltage drop on the coil for the rotation rate up to 14 Hz, at which the liquid metal started to leak from the outer sliding contact. Instead of the steady magnetic field predicted by the theory we detected a strongly fluctuating magnetic field with a strength comparable to that of Earth's magnetic field which was accompanied by similar voltage fluctuations in the coil. These fluctuations seem to be caused by the intermittent electrical contact through the liquid metal. The experimental results suggest that the dynamo with the actual electrical resistance of liquid metal contacts could be excited at the rotation rate of around 21 Hz provided that the leakage of liquid metal is prevented.Comment: 6 pages, 5 figures (to appear in Magnetohydrodynamics

    Human subjective response to steering wheel vibration caused by diesel engine idle

    Get PDF
    This study investigated the human subjective response to steering wheel vibration of the type caused by a four-cylinder diesel engine idle in passenger cars. Vibrotactile perception was assessed using sinusoidal amplitude-modulated vibratory stimuli of constant energy level (r.m.s. acceleration, 0.41 m/s(2)) having a carrier frequency of 26 Hz (i.e. engine firing frequency) and modulation frequency of 6.5 Hz (half-order engine harmonic). Evaluations of seven levels of modulation depth parameter m (0.0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0) were performed in order to define the growth function of human perceived disturbance as a function of amplitude modulation depth. Two semantic descriptors were used (unpleasantness and roughness) and two test methods (the Thurstone paired-comparison method and the Borg CR-10 direct evaluation scale) for a total of four tests. Each test was performed using an independent group of 25 individuals. The results suggest that there is a critical value of modulation depth m = 0.2 below which human subjects do not perceive differences in amplitude modulation and above which the stimulus-response relationship increases monotonically with a power function. The Stevens power exponents suggest that the perceived unpleasantness is non-linearly dependent on modulation depth m with an exponent greater than 1 and that the perceived roughness is dependent with an exponent close to unity

    Metamorphosis of helical magnetorotational instability in the presence of axial electric current

    Get PDF
    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical magnetorotational instability (HMRI) indefinitely by transforming it into a purely electromagnetic instability. Two different electromagnetic instability mechanisms are identified. The first is an internal pinch-type instability, which is due to the interaction of the electric current with its own magnetic field. Axisymmetric mode of this instability requires a free-space component of the azimuthal magnetic field. When the azimuthal component of the magnetic field is purely rotational and the axial component is nonzero, a new kind of electromagnetic instability emerges. The latter driven by the interaction of electric current with a weak collinear magnetic field in a quiescent fluid gives rise to a steady meridional circulation coupled with azimuthal rotation.Comment: 10 pages, 12 figures, final versio

    Factors determining exportation and internationalization in family businesses: The importance of debt

    Get PDF
    This study focuses on the factors that may influence Spanish family owned businesses to decide to export and move towards internationalization, posing their level of debt as a possible determining factor. To do so, a review of publications on the subject has been carried out, as well as an empirical study using a sample of 1,846 businesses, which include both family and non-family firms. The results seem to show that the debt level of businesses whose propriety and management are handled by a family differs from that of those that do not fit this characteristic, especially where the decision whether or not to export products abroad is concerned

    Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    Get PDF
    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.Comment: 30 pages, 7 figure

    Open Ocean Deep Sea

    Get PDF
    The deep sea comprises the seafloor, water column and biota therein below aspecified depth contour. There are differences in views among experts and agencies regarding the appropriate depth to delineate the “deep sea”. This chapter uses a 200 metre depth contour as a starting point, so that the “deep sea” represents 63 per cent of the Earth’s surface area and about 98.5 per cent of Earth’s habitat volume (96.5 per cent of which is pelagic). However, much of the information presented in this chapter focuses on biodiversity of waters substantially deeper than 200 m. Many of the other regional divisions of Chapter 36 include treatments of shelf and slope biodiversity in continental-shelf and slope areas deeper than 200m. Moreover Chapters 42 and 45 on coldwater corals and vents and seeps, respectively, and 51 on canyons, seamounts and other specialized morphological habitat types address aspects of areas in greater detail. The estimates of global biodiversity of the deep sea in this chapter do include all biodiversity in waters and the seafloor below 200 m. However, in the other sections of this chapter redundancy with the other regional chapters is avoided, so that biodiversity of shelf, slope, reef, vents, and specialized habitats is assessed in the respective regional or thematic chapters. AB - The deep sea comprises the seafloor, water column and biota therein below aspecified depth contour. There are differences in views among experts and agencies regarding the appropriate depth to delineate the “deep sea”. This chapter uses a 200 metre depth contour as a starting point, so that the “deep sea” represents 63 per cent of the Earth’s surface area and about 98.5 per cent of Earth’s habitat volume (96.5 per cent of which is pelagic). However, much of the information presented in this chapter focuses on biodiversity of waters substantially deeper than 200 m. Many of the other regional divisions of Chapter 36 include treatments of shelf and slope biodiversity in continental-shelf and slope areas deeper than 200m. Moreover Chapters 42 and 45 on coldwater corals and vents and seeps, respectively, and 51 on canyons, seamounts and other specialized morphological habitat types address aspects of areas in greater detail. The estimates of global biodiversity of the deep sea in this chapter do include all biodiversity in waters and the seafloor below 200 m. However, in the other sections of this chapter redundancy with the other regional chapters is avoided, so that biodiversity of shelf, slope, reef, vents, and specialized habitats is assessed in the respective regional or thematic chapters.https://nsuworks.nova.edu/occ_facbooks/1050/thumbnail.jp

    Long-Term GPS Tracking of Ocean Sunfish Mola mola Offers a New Direction in Fish Monitoring

    Get PDF
    Satellite tracking of large pelagic fish provides insights on free-ranging behaviour, distributions and population structuring. Up to now, such fish have been tracked remotely using two principal methods: direct positioning of transmitters by Argos polar-orbiting satellites, and satellite relay of tag-derived light-level data for post hoc track reconstruction. Error fields associated with positions determined by these methods range from hundreds of metres to hundreds of kilometres. However, low spatial accuracy of tracks masks important details, such as foraging patterns. Here we use a fast-acquisition global positioning system (Fastloc GPS) tag with remote data retrieval to track long-term movements, in near real time and position accuracy of <70 m, of the world's largest bony fish, the ocean sunfish Mola mola. Search-like movements occurred over at least three distinct spatial scales. At fine scales, sunfish spent longer in highly localised areas with faster, straighter excursions between them. These ‘stopovers’ during long-distance movement appear consistent with finding and exploiting food patches. This demonstrates the feasibility of GPS tagging to provide tracks of unparalleled accuracy for monitoring movements of large pelagic fish, and with nearly four times as many locations obtained by the GPS tag than by a conventional Argos transmitter. The results signal the potential of GPS-tagged pelagic fish that surface regularly to be detectors of resource ‘hotspots’ in the blue ocean and provides a new capability for understanding large pelagic fish behaviour and habitat use that is relevant to ocean management and species conservation
    • 

    corecore