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This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carry-
ing axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are consid-
ered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows
us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the
liquid can extend the range of helical magnetorotational instability (HMRI) indefinitely by transforming it into a
purely electromagnetic instability. Two different electromagnetic instability mechanisms are identified. The first is
an internal pinch-type instability, which is due to the interaction of the electric current with its own magnetic field.
Axisymmetric mode of this instability requires a free-space component of the azimuthal magnetic field. When the
azimuthal component of the magnetic field is purely rotational and the axial component is nonzero, a new kind of
electromagnetic instability emerges. The latter, driven by the interaction of electric current with a weak collinear
magnetic field in a quiescent fluid, gives rise to a steady meridional circulation coupled with azimuthal rotation.
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I. INTRODUCTION


Certain hydrodynamically stable rotational flows of elec-
trically conducting fluids can turn unstable in the presence
of the magnetic field. This rather counterintuitive effect was
first predicted by Velikhov [1] and Chandrasekhar [2,3] for
cylindrical Taylor-Couette (TC) flow of a perfectly conducting
fluid subject to axial magnetic field. After three decades of
obscurity the MRI was rediscovered by Balbus and Hawley
who speculated that it could account for the fast formation
of stars by driving turbulent transport of angular momentum
in accretion disks [4]. This hypothesis has spurred many
theoretical and numerical studies [5] as well as several attempts
to reproduce the MRI in the laboratory [6]. Though there is
little doubt about the reality of MRI, which follows directly
from classical fluid mechanics and electrodynamics, a con-
vincing experimental demonstration of this effect is hindered
by a serious technical issue. Like the magnetohydrodynamic
dynamo, the MRI requires the magnetic Reynolds number
Rm ∼ 10. For common liquid metals, which are relatively poor
conductors characterized by low magnetic Prandtl numbers
Pm ∼ 10−5–10−6, this translates into a large hydrodynamic
Reynolds number Re = Rm/Pm ∼ 106–107 [7]. At this high
Reynolds numbers most flows become turbulent due to inher-
ently hydrodynamic mechanisms independent of the MRI.


A way to circumvent this technical issue was suggested
by Hollerbach and Rüdiger [8], who found that the threshold
of MRI in cylindrical TC flow drops to Re ∼ 103 when the
imposed magnetic field is helical rather than purely axial
as for the standard MRI (SMRI). This helical type of MRI
(HMRI) turned out to be significantly weaker and much more
limited than the SMRI [9]. Nevertheless, an instability closely
resembling the HMRI was shortly observed in the PROMISE
experiment [10]. Subsequent analysis revealed that this insta-
bility has been observed slightly beyond the narrow range in
which the existence of HMRI is predicted by the ideal TC flow
model [11]. This apparently small discrepancy between the
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theory and experiment hides two major issues pertinent to the
HMRI. First, due to the hydrodynamic [12] and electromag-
netic [11] end effects, the real base flow, in which the HMRI
is to be observed, inevitably deviates from the ideal TC flow
used by the underlying theory. The end effects can be reduced
to some degree, as in the modified PROMISE experiment [13],
but they cannot be eliminated completely. Although the end
effects can be taken into account by realistic numerical models,
which can achieve a good agreement with the experiment, this
does not solve the main problem, which is the identification of
the HMRI. Namely, the HMRI is physically indistinguishable
from a magnetically modified hydrodynamic Taylor vortex
flow. The distinction between both is only theoretical and
based on the hydrodynamic stability limit. The latter is well
defined only for ideal TC flow but not for a realistic base flow
affected by the end effects. It is not obvious how to determine
this stability limit for a real base flow affected by both
hydrodynamic and magnetic end effects. Neither experiment
nor direct numerical simulation is able to discriminate between
the HMRI and other possible hydromagnetic of instabilities.


The second issue that makes the identification of the HMRI
particularly hard is the very short extension of this instability,
especially its self-sustained (absolute) mode, beyond the
hydrodynamic stability limit [11]. It is the narrow confinement
of the HMRI behind the hydrodynamic stability limit which
makes the exact location of this limit so important for the
identification of the HMRI. Besides the identification problem,
the short extension of the HMRI implies a limited astrophysical
relevance of this instability. Namely, though the HMRI is able
to destabilize certain centrifugally stable velocity distributions,
it does not reach up to the astrophysically relevant Keplerian
rotation profile [9,14,15].


Recently, it was suggested by Kirillov and Stefani [16] that
the range of HMRI can significantly be extended when the az-
imuthal magnetic field component is allowed to have a nonzero
rotation. This apparently minor mathematical modification
of the model has several far-reaching physical consequences
which are the main concern of the present paper. First, a
nonpotential azimuthal magnetic field physically means the
presence of axial electric current in the fluid which provides
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an electromagnetic energy source in addition to the mechanical
rotation. As a result, instability can develop without the
background flow and thus, in principle, extend over an
unlimited range of velocity profiles. In this paper we show that
there are two such instabilities which appear in the presence of
background electric current. The first is the resistive mode of
internal pinch-type instability which was originally predicted
by Michael [17] in ideally conducting Taylor-Couette flow
bounded by solid walls where it is expected to develop on the
Alfvén time scale [1]. The second appears to be a new type of
resistive instability driven by the interaction of axial electric
current with a weak collinear external magnetic field.


The first type of instability presents a certain astrophys-
ical interest as it is thought to affect the stars containing
toroidal magnetic fields [18,19]. Because the strong radial
stratification in stellar interiors makes this instability nearly
horizontal and thus significantly differ from other pinch-type
instabilities [20], Spruit [21] termed it Tayler instability. This
term was later used in a much broader sense by Rüdiger
et al. [22] to refer to current-driven instabilities in homogenous
fluids including liquid metals which are highly resistive from
astrophysical point of view. Such a resistive instability was
presumably observed in the recent liquid-metal experiment by
Seilmayer et al. [23].


Although axial magnetic field has been extensively studied
as a means of stabilization of the plasma pinch [24–26], its
potentially destabilizing effect in the highly resistive liquids
bounded by solid walls seems to have been overlooked so
far. The previous studies of the pinch instability in resistive
fluids have been limited to the conventional case of deformable
boundaries [27]. In this case, axial magnetic field applied along
a liquid metal jet carrying electric current is known to cause a
kink instability [28].


The paper is organized as follows. The problem is formu-
lated in Sec. II. Numerical results for various magnetic field
configurations are presented in Sec. III. The paper is concluded
with a brief discussion and summary of results in Sec. IV.


II. FORMULATION OF THE PROBLEM


Consider an incompressible fluid of kinematic viscosity
ν and electrical conductivity σ filling the gap between two
infinite concentric cylinders with the inner radius Ri and
the outer radius Ro rotating, respectively, with the angular
velocities �i and �o in the presence of a generally helical
magnetic field B0 = ezBz + eφBφ with the axial component
Bz = αB0 and the azimuthal component


Bφ = B0 [(β − γ )Ri/r + γ r/Ri] (1)


in cylindrical coordinates (r,φ,z) (see Fig. 1). The dimension-
less coefficient α defines the magnitude of axial component of
the magnetic field relative to that of the azimuthal component.
The latter has a free-space part defined by the coefficient
β and a rotational part defined by the coefficient γ , which
is associated with the axial current density in the fluid j0 =
μ−1


0 ∇ × B0 = ez
2γB0


μ0Ri
, where μ0 is the magnetic permeability


of vacuum. In the annular geometry with Ri �= 0, the absence
of the current at r < Ri produces also a free-space component
of the magnetic field with the effective helicity −γ which
appears in the first term of Eq. (1). Free-space magnetic


Ri


Ro
Ωi


Ωo
z


0B


j0 j0


FIG. 1. (Color online) Sketch of the problem.


field can be modified by passing additional current along an
electrode placed in the center of the annular cavity as in the
PROMISE experiment [10]. This component of the magnetic
field is specified by the coefficient β. Further, we use α = 1
for the magnetic field with a nonzero axial component, which
means B0 = Bz when Bz �= 0. A purely azimuthal magnetic
field corresponds to α = 0.


Following the inductionless approximation, which holds
for most liquid-metal magnetohydrodynamics characterized
by small magnetic Reynolds numbers Rm = μ0σv0L � 1,
where v0 and L are the characteristic velocity and length
scales, the magnetic field of the currents induced by the fluid
flow is assumed to be negligible relative to the imposed field
B0 everywhere except the electromagnetic force term in the
Navier-Stokes equation


∂tv + (v · ∇)v = ρ−1 (−∇p + j × B) + ν∇2v, (2)


where, as shown below, its interaction with the background
electric current j0 results in a non-negligible perturbation of
the electromagnetic body force. The electric current density is
governed by Ohm’s law for a moving medium,


j = σ (E + v × B0) , (3)


and related to the magnetic field by Ampère’s law, j =
μ−1


0 ∇ × B. In addition, we assume that the characteristic time
of velocity variation is much longer than the magnetic diffusion
time τ0 � τm = μ0σL2. This leads to the quasistationary
approximation according to which ∇ × E = 0 and E = −∇�,
where � is the electrostatic potential. Mass and charge
conservation imply ∇ · v = ∇ · j = 0.


The problem admits a base state with a purely azimuthal
velocity distribution v0(r) = eφv0(r), where


v0(r) = r
�oR


2
o − �iR


2
i


R2
o − R2


i


+ 1


r


�o − �i


R−2
o − R−2


i


.


Note that this base flow is not affected by the magnetic field
and remains the same as in the hydrodynamic case. First, this is
because the unperturbed electromagnetic force is potential, and
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thus can be compensated by a radial pressure gradient. Second,
there is no current and thus no additional electromagnetic
force generated by the base flow which gives rise only to the
electrostatic potential �0(r) = B0


∫
v0(r) dr , whose gradient


compensates the induced electric field. Current can appear
only in the perturbed state,


{ v,p


B,�


}
(r,t) =


{ v0,p0


B0,�0


}
(r) +


{ v1,p1


B1,�1


}
(r,t),


where v1, p1, B1, and �1 are small-amplitude perturbations
for which Eqs. (2) and (3) after linearization take the form


∂tv1 + (v1 · ∇)v0 + (v0 · ∇)v1


= ρ−1 (−∇p1 + j1 × B0 + j0 × B1) + ν∇2v1, (4)


j1 = σ (−∇�1 + v1 × B0) = μ−1
0 ∇ × B1. (5)


Taking the curl of Eq. (5) to eliminate the potential gradient
we obtain the following induction equation:


σ∇ × (v1 × B0) + μ−1
0 ∇2B1 = 0. (6)


The subsequent analysis is limited to axisymmetric pertur-
bations which are not necessary the most unstable but still
useful for elucidating the basic instability mechanisms. For
such perturbations, the solenoidity constraints are satisfied by
introducing meridional stream functions ψ and h for the fluid
flow and electric current as


v = veφ + ∇ × (ψeφ), j = jeφ + ∇ × (heφ).


Note that h is the azimuthal component of the induced mag-
netic field which is governed by Eq. (6) and used subsequently
instead of � for the description of the induced current.
Equation (4) contains not only the azimuthal current, which is
explicitly related to the radial velocity, but also the radial com-
ponent of the induced magnetic field, which is subsequently
denoted by g and governed by the radial component of Eq. (6).
For numerical purposes, we introduce also the vorticity


ω = ωeφ + ∇ × (veφ) = ∇ × v


as an auxiliary variable. Perturbations are sought in the normal
mode form


{v1,ω1,ψ1,h1,g1}(r,t) = {v̂,ω̂,ψ̂,ĥ,ĝ}(r) × eΓ t+ikz,


where Γ is a generally complex growth rate and k is a real wave
number. Henceforth, we proceed to dimensionless variables by
using Ri , R2


i /ν, Ri�i , B0, and σμ0B0R
2
i �i as the length, time,


velocity, and the induced magnetic field scales, respectively.
Nondimensional governing equations then read as


Γ v̂ = Dkv̂ + Re ikr−1(r2�)′ψ̂ + Ha2(ikαĥ + 2γ ĝ), (7)


Γ ω̂ = Dkω̂ + 2Re ik�v̂


+ Ha2ik[ikαψ̂ − 2((β − γ )r−2 + γ )ĥ], (8)


0 = Dkψ̂ + ω̂, (9)


0 = Dkĥ + ik[αv̂ − 2(β − γ )r−2ψ̂], (10)


0 = Dkĝ + k2αψ̂, (11)


where Dkf ≡ r−1(rf ′)′ − (r−2 + k2)f and the prime stands
for d


dr
; Re = R2


i �i/ν and Ha = RiB0
√


σ/ρν are Reynolds


and Hartmann numbers, respectively;


�(r) = λ−2 − μ + r−2 (μ − 1)


λ−2 − 1


is the dimensionless angular velocity of the base flow defined
in terms of λ = Ro/Ri and μ = �o/�i .


The boundary conditions for the hydrodynamic perturba-
tions on the inner and outer cylinders at r = 1 and r = λ,
respectively, are v̂ = ψ̂ = ψ̂ ′ = 0. The boundary conditions
for the electric stream function ĥ at insulating and perfectly
conducting cylinders are ĥ = 0 and (rĥ)′ = 0, respectively.
Note that the latter case should be understood as a limit
only because it implies an infinite current density in the
perfectly conducting walls in the presence of a nonzero axial
electric current through the liquid [29]. The effective boundary
conditions for the radial component of the induced magnetic
field ĝ follow from the free-space solution of Eq. (11) with
ψ̂ ≡ 0, which yields


ĝ(r) =
{
GiI1(kr), 0 � r � 1
GoK1(kr), r � λ,


where I1 and K1 are the modified Bessel functions of the first
and second types of index 1 [30]. Taking the ratio (rĝ)′/ĝ to
eliminate the unknown constants Gi and Go, we obtain the
sought boundary conditions in the form


(rĝ)′ = ci(kr)ĝ at r = 1,


(rĝ)′ = co(kr)ĝ at r = λ,


where ci(r) = rI0(r)/I1(r) and co(r) = −rK0(r)/K1(r). Be-
cause the radial magnetic field component ĝ is generated by
the azimuthal current, which is tangential to the boundaries,
it is not affected by the conductivity of walls. Thus, the
boundary conditions above apply to both insulating and
perfectly conducting cylinders.


Equations (7)–(11) were solved numerically using a spec-
tral collocation method on a Chebyshev-Lobatto grid with a
typical number of internal points N = 32. In order to avoid
spurious eigenvalues, auxiliary Dirichlet boundary conditions
for ω̂ were introduced and then numerically eliminated using
the no-slip boundary conditions ψ̂ ′ = 0 [31]. The electromag-
netic variables ĥ and ĝ were represented in terms of v̂ and ψ̂ by
numerical solution of Eqs. (10) and (11) and then substituted
into Eqs. (7) and (8). The resulting standard complex matrix
eigenvalue problem of the size 2N × 2N was solved by the
LAPACK ZGEEV routine.


III. RESULTS


A. Degeneration of the HMRI in the presence
of axial electric current


In the following, the radii ratio of inner and outer cylinders
is fixed to λ = 2 and the cylinders are assumed to be insulating,
unless stated otherwise. We start with a hydrodynamically
unstable flow corresponding to the ratio of rotation rates
μ= 0.2, which is below the Rayleigh limit μc = λ−2 = 0.25.


The magnetic field is helical with the axial component fixed
by α = 1 and the azimuthal component generated only by
the current passing through the fluid, which corresponds to
β = 0. In a purely axial magnetic field corresponding to
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FIG. 2. (Color online) Marginal Reynolds number (a) and the frequency (b) versus wave number for a hydrodynamically unstable flow
with μ = 0.2 at various helicities γ of rotational helical magnetic field with α = 1, β = 0, and Ha = 10.


γ = 0, the flow becomes centrifugally unstable to stationary
Taylor vortices when Reynolds number exceeds the marginal
value which is plotted in Fig. 2(a) against the wave number
k. Addition of a weak azimuthal magnetic field reduces
the instability threshold and makes the instability oscillatory
with the frequency ω = Im[Γ ] which is shown in Fig. 2(b).
The most important result seen in Fig. 2(a) is the drop of
marginal Reynolds number to zero in a range of intermediate
wave numbers when the helicity of the field due the axial
current defined by γ becomes somewhat greater than 3.7. Zero
Reynolds number means that this instability becomes entirely
electromagnetic. Moreover, Fig. 2(b) shows that this instability
is stationary, i.e., ω = 0. It will be shown later that two different
electromagnetic mechanisms may be behind this instability.


Next, let us turn to a hydrodynamically stable case
corresponding to the ratio of rotation rates set to μ = 0.3,
which is slightly above the Rayleigh limit μc = 0.25. As seen
in Fig. 3(a), a moderately helical rotational magnetic field
can destabilize this flow similarly to the helical free-space
magnetic field [32]. In both cases neutral stability curves form
closed contours, which means that the instability can occur


only in limited ranges of Reynolds and wave numbers. In
contrast to the hydrodynamically unstable case considered
above, there are now two marginal Reynolds numbers—the
lower one by exceeding which the flow destabilizes and
the upper one by exceeding which the flow restabilizes. The
existence of the upper critical Reynolds number is another
peculiarity of the HMRI which, in principle, distinguishes it
from a magnetically modified Taylor vortex flow [32]. The
upper critical Reynolds number and the associated islands of
instability appear also in a centrifugally unstable regime with
an axial through flow [33].


This picture changes when the helicity of the rotational
field exceeds γ ≈ 3.7. As for the hydrodynamically unstable
case considered above, marginal Reynolds number again drops
to zero in a certain range of intermediate wave numbers.
Figure 4(a) shows the critical Reynolds number and the
respective frequency versus the ratio of rotation rates of inner
and outer cylinders μ at various helicities γ of rotational
helical magnetic field with α = 1, β = 0, and Ha = 10.


As the axial current defined by γ is increased, the lower
critical Reynolds number reduces and the range of instability
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FIG. 3. (Color online) Marginal Reynolds number (a) and the frequency (b) versus the wave number for a hydrodynamically stable flow
with μ = 0.3 at various helicities γ of rotational helical magnetic field with α = 1, β = 0, and Ha = 10.
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FIG. 4. (Color online) Critical Reynolds number (a) and the frequency (b) versus the ratio of rotation rates of inner and outer cylinders μ


at various helicities γ of rotational helical magnetic field with α = 1, β = 0 and Ha = 10.


beyond the Rayleigh limit increases until the critical value
γ ≈ 3.7 is attained. At this critical helicity, the lower critical
Reynolds number drops to zero and the range of instability
becomes effectively unlimited. It is important to note that
the extension of instability beyond the Rayleigh limit reduces
with the increase of Reynolds number. This corresponds to
the restabilization of the flow by the fast rotation, which takes
place above the upper critical Reynolds number plotted in 4(a)
for the values of μ beyond the Rayleigh limit.


B. Instability in the azimuthal magnetic field generated
by axial current in the liquid


Let us consider next what happens when the axial com-
ponent of the magnetic field is switched off by setting
α = 0. It means that the magnetic field is now perfectly
azimuthal and generated only by the axial current in the
liquid. Marginal Reynolds number and the frequency for both
hydrodynamically unstable (μ = 0.2) and stable (μ = 0.3)
flows in the magnetic fields of various strength defined by
γ and Ha = 10 are plotted against the wave number k in
Fig. 5. For the hydrodynamically unstable flow, the effect
of the azimuthal field is very similar to that of the helical
field considered previously. Namely, the increase of the axial
electric current defined by γ reduces marginal Reynolds
number, which again drops to zero in a certain range of wave
numbers when γ � 4.5. In contrast to helical magnetic field,
now the instability is completely stationary, i.e., ω = 0. For
hydrodynamically stable flow, the effect slightly differs from
that of the helical field. First, in this case all neutral stability
curves, which as before exist only for a limited range of wave
numbers, end at zero Reynolds number. It means that the lower
critical Reynolds number, if any, is always zero when the
flow is hydrodynamically stable. Second, as seen in Fig. 5, an
oscillatory instability mode appears contrary to Edmonds [29]
conjecture in a certain subrange of unstable wave numbers
at sufficiently high Re when γ � 6. This oscillatory mode,
which resembles an electromagnetically destabilized inertial
wave, persists up to much higher Reynolds numbers than the
stationary one.


The stationary mode looks like a pinch-type instability
which has been studied in this setup numerically by Shaly-
bkov using a more general nonaxisymmetric and finite-Pm
approximation [34,35] and Rüdiger et al. [22] in the context
of the so-called azimuthal MRI. The latter is inherently non-
axisymmetric [36] and has the same limited extension beyond
the Rayleigh line as the HMRI in the highly resistive limit [15].
Undeterred by the associated identification challenges, which
we discussed in the introduction, Seilmayer et al. [37] claim
to have observed this instability in another recent liquid-metal
experiment.


Pinch-type instability operates through the compression
of the azimuthal magnetic field lines by a radially inward
flow perturbation which amplifies itself by enhancing the
electromagnetic pinch force generated by the interaction of
the axial electric current with its own magnetic field. It
is important to notice that axisymmetric meridional flow
interacts only with the free-space (∼r−1) component but
not with the rotational (∼r) component of the azimuthal
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FIG. 5. (Color online) Marginal Reynolds number versus wave
number for hydrodynamically unstable (μ = 0.2) and stable
(μ = 0.3) flows in the azimuthal magnetic field (α = 0) generated
only by the axial current in the liquid annulus (β = 0) with various
magnitude γ at Ha = 10.
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FIG. 6. (Color online) Critical Reynolds number versus the ratio
of rotation rates of inner and outer cylinders μ at various helicities
γ of purely rotational helical magnetic field with α = 1, β = γ , and
Ha = 10.


magnetic field [17,29]. As is easy to see from Eq. (10),
the respective induction term proportional to β − γ is en-
tirely due to the free-space component of the magnetic


field, and vanishes together with the latter when γ = β.
The interaction between axisymmetric meridional flow and
azimuthal rotational magnetic field is precluded by the conser-
vation of the magnetic flux. The flux is conserved because the
rotational magnetic field varies linearly with the cylindrical
radius r while the respective cross-sectional area of a toroidal
element of constant volume in incompressible fluid flow varies
inversely with r. Thus, in contrast to the conventional z


pinch, this instability requires not only a rotational but also
a free-space component of the azimuthal magnetic field. The
latter, however, is possible only in annular but not in cylindrical
geometry. As seen from Eq. (1), the free-space component of
the azimuthal magnetic field associated to the axial electric cur-
rent in annular geometry (Ri �= 0) can be compensated by an
additional free-space magnetic field with β = γ , which leaves
only the rotational component ∼r as in the solid cylinder.


C. Instability in helical magnetic field with a perfectly
rotational azimuthal component


Now let us check what happens when the axisymmetric
pinch instability is excluded by applying a compensating free-
space magnetic field with β = γ , which makes the azimuthal
component of the magnetic field perfectly rotational, that is,


100


101


102


 0.1  1  10


M
ar


gi
na


l H
ar


tm
an


n 
nu


m
be


r, 
H


a


Wave number, k


unstable


stable (a)


γ = 1.5
2
3
5


10
20


100


101


102


 0.1  1  10


M
ar


gi
na


l H
ar


tm
an


n 
nu


m
be


r, 
H


a


Wave number, k


unstable


stable (b)


γ = 1
1.5


2
3
5


10
20


101


102


103


 0.1  1  10


M
od


ifi
ed


 m
ar


gi
na


l H
ar


tm
an


n 
nu


m
be


r


Wave number, k


unstable


stable


insulating


conducting
(c)


(α = β = 0) γHa
(α = 0; β → γ)      (1− β/γ)1/2γHa
(α << β = γ)                  (αγ)1/2Ha


FIG. 7. (Color online) Marginal Hartmann number versus wave number for purely electromagnetic (Re = 0) stationary (ω = 0) instabilities
in the rotational magnetic field with α = 1, β = 0 (a), α = 1, β = γ (b), and α = 0, β = 0, and β → γ (c) for both insulating and perfectly
conducting cylinders at various axial currents defined by γ.
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FIG. 8. (Color online) Streamlines (a) and the electric current
lines (b) of the critical perturbation for the electromagnetic (Re = 0)
pinch-type instability (α = β = 0).


purely linear in r. In order to have any electromagnetic effect
on the axisymmetric disturbances, we need to add an axial
magnetic field by setting α = 1. Both the critical Reynolds
number and the frequency, which are shown in Fig. 6 versus
the ratio of rotation rates of outer and inner cylinders for
Ha = 10, look very similar to the respective characteristics
shown in Fig. 4(a) for the rotational helical magnetic field
with an uncompensated free-space component. As before, the
increase of the axial current reduces the critical Reynolds
number, which in this case drops to zero at the critical
value β = γ ≈ 2.9, leading to an unlimited extension of the
instability beyond the Rayleigh limit for larger values of
γ . Thus, the elimination of the pinch-type instability has a
surprisingly little effect on the remaining instability.


D. Purely electromagnetic instabilities


Zero marginal Reynolds number means that the instability
no longer depends on the background flow and is driven
entirely by the electromagnetic force which is defined by


Hartmann number. Marginal Ha for such electromagnetically
sustained disturbances is plotted in Fig. 7 against wave number
for various axial current parameters γ in helical magnetic
field with uncompensated (α = 1,β = 0) (a) and compensated
β = γ (b) free-space azimuthal components as well as in a
purely azimuthal field (α = 0) generated only by the axial
current in the liquid (β = 0), and with nearly compensated
free-space component (β → γ ) (c). For the first two helical
field configurations, marginal Ha is seen to vary with γ


in a similar way. For purely azimuthal field configuration,
the pinch-type instability driven only by the current passing
through the liquid is determined by the effective Hartmann
number γ Ha. As seen in Fig. 7(c), the lowest value γ Hac ≈
42.74 for insulating cylinders is attained at the critical
wave number kc ≈ 3.13. When the cylinders are perfectly
conducting and thus the induced currents can freely close
through them, the instability threshold is seen to decrease with
the wave length so the lowest value γ Hac ≈ 26.6 is attained
asymptotically at k → 0. This instability gives rise to a steady
meridional flow whose streamlines and the associated electric
current lines for insulating boundaries are shown in Fig. 8.


Critical Hartmann and wave numbers for all three basic field
configurations are summarized in Fig. 9 for both insulating and
perfectly conducting boundaries. It is seen that at a sufficiently
large γ , the instability in helical magnetic field with a nonzero
(uncompensated) free-space azimuthal component turns into
the pinch instability with Hac ∼ γ −1. When this pinch-type in-
stability is excluded by setting β = γ , which corresponds to a
compensated free-space azimuthal component of the magnetic
field, the critical Hartmann number at large γ varies differently
as Hac ∼ γ −1/2. This implies a different type of instability
which is driven by the interaction of axial electric current
with a collinear external magnetic field. As seen in Fig. 7(c),
in contrast to the pinch-type instability, this instability has
a finite critical wave length not only for insulating but also
for perfectly conducting cylinders. The latter fact implies that
this instability relies on the closure of induced currents within
the liquid which is discussed in more detail in the concluding
section. The critical perturbation pattern of this rather complex
instability for insulating cylinders is shown in Fig. 10.
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FIG. 9. (Color online) Critical Hartmann number (a) and wave number (b) for purely electromagnetic (Re = 0) stationary (ω = 0)
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FIG. 10. (Color online) Streamlines (a), isolines of the azimuthal velocity (b), the electric current lines (c), and the meridional magnetic
flux lines (d) for the critical perturbation of electromagnetic (Re = 0) rotational instability in the asymptotic case α � β = γ .


Figure 11 shows the critical Hartmann number based on
the gap width against the inner radius for both the pinch-
type instability (α = β = 0) and the instability driven by the
electric current in a weak axial magnetic field (α � β = γ ). In
the limits Ri → 0 and Ri → ∞, the annular layer turns into
a cylinder and a flat layer, respectively. Note that according
to our parametrization of the magnetic field (1), the axial
current density diverges as γ /Ri → ∞ when Ri → 0. The
critical Hartmann number for the pinch-type instability based
on this singular current density approaches a constant value
when Ri → 0 and increases as ∼R


3/2
i for Ri � 1. The


critical Hartmann number based on the fixed current density,
i.e., rescaled with R−1


i , which is plotted in Fig. 11, attains
minima at Ri ≈ 1 and increases as ∼R−1


i and ∼R
1/2
i for


Ri � 1 and � 1, respectively. It means that the related pinch
instability vanishes not only in the cylindrical geometry, where
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FIG. 11. (Color online) Critical Hartmann number rescaled with
the gap width λ − 1 versus the rescaled inner radius Ri = (λ − 1)−1


for the pinch instability (α = β = 0) and for the instability driven
by the electric current in a weak axial magnetic field (α � β = γ )
with both cylinders insulating (i), perfectly conducting (c), inner
cylinder insulating and outer cylinder perfectly conducting (i/c).
The Hartmann number for the latter instability (on the left axis) is
additionally rescaled with the effective current density γ /Ri.


β = γ , but also in the planar unbounded layer, where the
associated electromagnetic force can be shown become purely
irrotational. The critical Hartmann number rescaled with the
current density for the other instability is seen to remain finite
in both limits of Ri. It means that, in contrast to the pinch
instability, this instability has a finite critical current density
also in the cylindrical geometry. However, despite the finite
critical Hartmann number for Ri → ∞, this instability has
no analog in the planar unbounded layer. In this case, critical
Hartmann number remains finite when Ri → ∞ because the
azimuthal magnetic field (1) for β = γ diverges as ∼Ri. When
the current density is rescaled by 1/Ri to have a finite magnetic
field when Ri → ∞, the critical Hartmann number for Ri � 1
also increases as ∼R


1/2
i .


Finally, let us consider the effect of additional free-space
azimuthal field on the pinch-type instability without axial
magnetic field (α = 0). Critical Hartmann number and the
wave numbers for this case are shown in Fig. 12 versus
1 − β/γ , which defines the relative strength of the free-space
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FIG. 12. (Color online) Critical Hartmann number and the wave
number for the electromagnetic pinch instability versus 1 − β/γ


which defines the strength of free-space azimuthal component the
magnetic field relative to the rotational component generated by axial
current.
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component. As seen in Fig. 12, the critical Hartmann number
attains the minimum Hac ≈ 42.74γ −1 at β/γ slightly less than
0 and increases asymptotically as Hac ∼ 31γ −1(1 − β/γ )−1/2


when β/γ → 1. Marginal Hartmann number for this limit,
which corresponds to a nearly compensated free-space az-
imuthal component of the magnetic field, is plotted in Fig. 7(c).
Asymptotic result is obtained by dropping the term with
β − γ in Eq. (8) which produces a quadratically small effect
relative to analogous term in Eq. (8) when β → γ. Critical
Hartmann number becomes very large also when β/γ → −2,
which corresponds a compensated total axial current through
the system. In this case, the current which passes through
the liquid returns along a central electrode and thus cancels
the field in the free space outside the system. This setup has
been suggested by Stefani et al. [38] as a possible means
of avoiding pinch-type instability in the future liquid metal
batteries.


IV. SUMMARY AND CONCLUSIONS


The present study was concerned with numerical linear
stability analysis of a cylindrical Taylor-Couette flow of liquid
metal carrying an axial electric current in the presence of a
generally helical external magnetic field. It was shown that the
electric current passing through the liquid profoundly alters
the nature of the helical MRI by transforming it into a purely
electromagnetic instability. Two different electromagnetic
instability mechanisms were identified. The first is an internal
pinch-type instability which is driven by the interaction of the
electric current with its own magnetic field. The axisymmetric
mode of this instability considered in the present study requires
a free-space component of the azimuthal magnetic field, which
is possible in the annular but not in the cylindrical geometry. In
the annular geometry this instability mode can be eliminated
by passing an additional current along the axis of the system
to compensate the free-space azimuthal component of the
magnetic field in the liquid. In this case, the addition of
axial magnetic field was found to give rise to a new kind
of electromagnetic instability.


The mechanism of this instability, which is driven by the
interaction of axial electric current with a weak collinear


external magnetic field, is as follows. First, a radially outward
initial flow perturbation slightly bends the axial magnetic
field but does not affect, as argued above, the purely rota-
tional azimuthal field and the associated axial current. The
deflected axial field crossing the unperturbed axial current
gives rise to an azimuthal electromagnetic force which, in
turn, drives an azimuthal flow perturbation. The fluid rotates
in the positive direction below the radial flow perturbation,
where the axial field is bent outwards, and in the negative
direction above it, where the axial field bends back. Next, the
azimuthal flow perturbation in the axial magnetic field induces
radially outward and inward electric currents below and above
the initial radial flow perturbation, respectively. These two
opposite radial electric currents close in the inner part of the
liquid annulus via a downward axial current, which, in turn,
interacts with the azimuthal magnetic field and generates a
radially outward electromagnetic force perturbation. The latter
amplifies the initial radial flow perturbation, so promoting the
instability.


In contrast to the azimuthal MRI [22], the helical MRI
does not separate from purely electromagnetic instabilities in
the inductionless limit Pm = 0. It is also important to note
that although electromagnetic instabilities can develop without
mechanical rotation, the latter has a stabilizing effect when the
base flow is hydrodynamically stable. Similarly to the HMRI,
the electromagnetic instabilities are constrained beyond the
Rayleigh line to sufficiently low Reynolds numbers. This dy-
namical constraint may severely limit astrophysical relevance
of electromagnetic instabilities. Nevertheless, there are several
industrial applications such as, for example, aluminum reduc-
tions cells [39] and the prospective liquid metal batteries [40],
where the strong electric current passing through the liquid
metal in the presence of a collinear magnetic field can give
rise to the electromagnetic instability identified in this study.
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for growth of spiral vortices in the Taylor-Couette system
with and without axial through flow, Phys. Rev. E 84, 046308
(2011).


[34] D. Shalybkov, Pinch instabilities in Taylor-Couette flow,
Phys. Rev. E 73, 016302 (2006).


[35] D. Shalybkov, Rotational stabilization of pinch instabilities in
Taylor-Couette flow, Phys. Rev. E 75, 047302 (2007).


[36] R. Hollerbach, V. Teeluck, and G. Rüdiger, Nonaxisymmetric
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