71 research outputs found

    Determining trip and travel mode from GPS and accelerometer data

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The use of Global Positioning Systems (GPS) and/or accelerometers to identify trips and transportation modes such as walking, running, bicycling or motorized transportation has been an active goal in multiple disciplines such as Transportation Engineering, Computer Science, Informatics and Public Health. The purpose of this study was to review existing methods that determined trip and travel mode from raw Global Positioning System (GPS) and accelerometer data, and test a select group of these methods. The study had three specific aims: (1) Create a systematic review of existing literature that explored various methods for determining trip and travel mode from GPS and/or accelerometer data, (2) Collect a convenience sample of subjects who were assigned a GPS and accelerometer unit to wear while performing and logging travel bouts consisting of walking, running, bicycling and driving, (3) Replicate selected method designs extracted from the systematic review (aim 1) and use subject data (aim 2) to compare the methods. The results were be used to examine which methods are effective for various modes of travel

    Variable-temperature, variable-field magnetic circular dichroism spectroscopic study of NifEN-bound precursor and “FeMoco”

    Get PDF
    NifEN plays a key role in the biosynthesis of the iron–molybdenum cofactor (FeMoco) of nitrogenase. A scaffold protein that hosts the conversion of a FeMoco precursor to a mature cofactor, NifEN can assume three conformations during the process of FeMoco maturation. One, designated ΔnifB NifEN, contains only two permanent [Fe4S4]-like clusters. The second, designated NifENPrecursor, contains the permanent clusters and a precursor form of FeMoco. The third, designated NifEN“FeMoco”, contains the permanent [Fe4S4]-like clusters and a fully complemented, “FeMoco”-like structure. Here, we report a variable-temperature, variable-field magnetic circular dichroism spectroscopic investigation of the electronic structure of the metal clusters in the three forms of dithionite-reduced NifEN. Our data indicate that the permanent [Fe4S4]-like clusters are structurally and electronically conserved in all three NifEN species and exhibit spectral features of classic [Fe4S4]+ clusters; however, they are present in a mixed spin state with a small contribution from the S > œ spin state. Our results also suggest that both the precursor and “FeMoco” have a conserved Fe/S electronic structure that is similar to the electronic structure of FeMoco in the MoFe protein, and that the “FeMoco” in NifEN“FeMoco” exists, predominantly, in an S = 3/2 spin state with spectral parameters identical to those of FeMoco in the MoFe protein. These observations provide strong support to the outcome of our previous EPR and X-ray absorption spectroscopy/extended X-ray absorption fine structure analysis of the three NifEN species while providing significant new insights into the unique electronic properties of the precursor and “FeMoco” in NifEN

    The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis

    Get PDF
    Aging promotes a range of degenerative pathologies characterized by progressive losses of tissue and/or cellular function. Fibrosis is the hardening, overgrowth and scarring of various tissues characterized by the accumulation of extracellular matrix components. Aging is an important predisposing factor common for fibrotic heart and respiratory disease. Age-related processes such as senescence, inflammaging, autophagy and mitochondrial dysfunction are interconnected biological processes that diminish the regenerative capacity of the aged heart and lung and have been shown to play a crucial role in cardiac fibrosis and idiopathic pulmonary fibrosis. This review focuses on these four processes of aging in relation to their role in fibrosis. It has long been established that the heart and lung are linked both functionally and anatomically when it comes to health and disease, with an ever-expanding aging population, the incidence of fibrotic disease and therefore the number of fibrosis-related deaths will continue to rise. There are currently no feasible therapies to treat the effects of chronic fibrosis therefore highlighting the importance of exploring the processes of aging and its role in inducing and exacerbating fibrosis of each organ. The focus of this review may help to highlight potential avenues of therapeutic exploration</p

    Insertion of heterometals into the NifEN-associated iron–molybdenum cofactor precursor

    Get PDF
    The cofactors of Mo-, V-, Fe-dependent nitrogenases are believed to be highly homologous in structure despite the different types of heterometals (Mo, V, and Fe) they contain. Previously, a precursor form of the FeMo cofactor (FeMoco) was captured on NifEN, a scaffold protein for FeMoco biosynthesis. This all-Fe precursor closely resembles the Fe/S core structure of the FeMoco and, therefore, could reasonably serve as a precursor for all nitrogenase cofactors. Here, we report the heterologous incorporation of V and Fe into the NifEN-associated FeMoco precursor. EPR and activity analyses indicate that V and Fe can be inserted at much reduced efficiencies compared with Mo, and incorporation of both V and Fe is enhanced in the presence of homocitrate. Further, native polyacrylamide gel electrophoresis experiments suggest that NifEN undergoes a significant conformational rearrangement upon metal insertion, which allows the subsequent NifEN–MoFe protein interactions and the transfer of the cofactor between the two proteins. The combined outcome of these in vitro studies leads to the proposal of a selective mechanism that is utilized in vivo to maintain the specificity of heterometals in nitrogenase cofactors, which is likely accomplished through the redox regulation of metal mobilization by different Fe proteins (encoded by nifH, vnfH, and anfH, respectively), as well as the differential interactions between these Fe proteins and their respective scaffold proteins (NifEN and VnfEN) in the Mo-, V-, and Fe-dependent nitrogenase systems

    Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory

    Full text link
    Absolute total electron-ion recombination rate coefficients of argonlike Sc3+(3s2 3p6) ions have been measured for relative energies between electrons and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F intermediate state is found at 12.31 +- 0.03 eV with a small experimental evidence for an asymmetric line shape. From R-Matrix and perturbative calculations we infer that the asymmetric line shape may not only be due to quantum mechanical interference between direct and resonant recombination channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but may partly also be due to the interaction with an adjacent overlapping DR resonance of the same symmetry. The overall agreement between theory and experiment is poor. Differences between our experimental and our theoretical resonance positions are as large as 1.4 eV. This illustrates the difficulty to accurately describe the structure of an atomic system with an open 3d-shell with state-of-the-art theoretical methods. Furthermore, we find that a relativistic theoretical treatment of the system under study is mandatory since the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D resonances can only be explained when calculations beyond LS-coupling are carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also: http://www.strz.uni-giessen.de/~k

    Prioritizing the Role of Major Lipoproteins and Subfractions as Risk Factors for Peripheral Artery Disease.

    Get PDF
    BACKGROUND: Lipoprotein-related traits have been consistently identified as risk factors for atherosclerotic cardiovascular disease, largely on the basis of studies of coronary artery disease (CAD). The relative contributions of specific lipoproteins to the risk of peripheral artery disease (PAD) have not been well defined. We leveraged large-scale genetic association data to investigate the effects of circulating lipoprotein-related traits on PAD risk. METHODS: Genome-wide association study summary statistics for circulating lipoprotein-related traits were used in the mendelian randomization bayesian model averaging framework to prioritize the most likely causal major lipoprotein and subfraction risk factors for PAD and CAD. Mendelian randomization was used to estimate the effect of apolipoprotein B (ApoB) lowering on PAD risk using gene regions proxying lipid-lowering drug targets. Genes relevant to prioritized lipoprotein subfractions were identified with transcriptome-wide association studies. RESULTS: ApoB was identified as the most likely causal lipoprotein-related risk factor for both PAD (marginal inclusion probability, 0.86; P=0.003) and CAD (marginal inclusion probability, 0.92; P=0.005). Genetic proxies for ApoB-lowering medications were associated with reduced risk of both PAD (odds ratio,0.87 per 1-SD decrease in ApoB [95% CI, 0.84-0.91]; P=9×10-10) and CAD (odds ratio,0.66 [95% CI, 0.63-0.69]; P=4×10-73), with a stronger predicted effect of ApoB lowering on CAD (ratio of effects, 3.09 [95% CI, 2.29-4.60]; P<1×10-6). Extra-small very-low-density lipoprotein particle concentration was identified as the most likely subfraction associated with PAD risk (marginal inclusion probability, 0.91; P=2.3×10-4), whereas large low-density lipoprotein particle concentration was the most likely subfraction associated with CAD risk (marginal inclusion probability, 0.95; P=0.011). Genes associated with extra-small very-low-density lipoprotein particle and large low-density lipoprotein particle concentration included canonical ApoB pathway components, although gene-specific effects were variable. Lipoprotein(a) was associated with increased risk of PAD independently of ApoB (odds ratio, 1.04 [95% CI, 1.03-1.04]; P=1.0×10-33). CONCLUSIONS: ApoB was prioritized as the major lipoprotein fraction causally responsible for both PAD and CAD risk. However, ApoB-lowering drug targets and ApoB-containing lipoprotein subfractions had diverse associations with atherosclerotic cardiovascular disease, and distinct subfraction-associated genes suggest possible differences in the role of lipoproteins in the pathogenesis of PAD and CAD

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease

    Get PDF
    Background--Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI-1 on CHD risk. Methods and Results--To evaluate the association between PAI-1 and CHD, we applied a 3-step strategy. First, we investigated the observational association between PAI-1 and CHD incidence using a systematic review based on a literature search for PAI-1 and CHD studies. Second, we explored the causal association between PAI-1 and CHD using a Mendelian randomization approach using summary statistics from large genome-wide association studies. Finally, we explored the causal effect of PAI-1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta-analysis, the highest quantile of blood PAI-1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age- and sex-adjusted model. The effect size was reduced in studies using a multivariable-adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI-1 level on CHD risk (odds ratio=1.22 per unit increase of log-transformed PAI-1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI-1 on elevating blood glucose and high-density lipoprotein cholesterol. Conclusions--Our study indicates a causal effect of elevated PAI-1 level on CHD risk, which may be mediated by glucose dysfunction
    • 

    corecore