33 research outputs found

    Immune Gene Expression in Bombus terrestris: Signatures of Infection Despite Strong Variation among Populations, Colonies, and Sister Workers

    Get PDF
    Ecological immunology relies on variation in resistance to parasites. Colonies of the bumblebee Bombus terrestris vary in their susceptibility to the trypanosome gut parasite Crithidia bombi, which reduces colony fitness. To understand the possible origin of this variation in resistance we assayed the expression of 28 immunologically important genes in foraging workers. We deliberately included natural variation of the host “environment” by using bees from colonies collected in two locations and sampling active foraging workers that were not age controlled. Immune gene expression patterns in response to C. bombi showed remarkable variability even among genetically similar sisters. Nevertheless, expression varied with parasite exposure, among colonies and, perhaps surprisingly, strongly among populations (collection sites). While only the antimicrobial peptide abaecin is universally up regulated upon exposure, linear discriminant analysis suggests that the overall exposure effect is driven by a combination of several immune pathways and further immune functions such as ROS regulation. Also, the differences among colonies in their immune gene expression profiles provide clues to the mechanistic basis of well-known inter-colony variation in susceptibility to this parasite. Our results show that transcriptional responses to parasite exposure can be detected in ecologically heterogeneous groups despite strong background noise

    Temperature and clone-dependent effects of microplastics on immunity and life history in Daphnia magna

    Get PDF
    Microplastic (MP) pollution is potentially a major threat to many aquatic organisms. Yet we currently know very little about the mechanisms responsible for the effects of small MPs on phenotypes, and the extent to which effects of MPs are modified by genetic and environmental factors. Using a multivariate approach, we studied the effects of 500 nm polystyrene microspheres on the life history and immunity of eight clones of the freshwater cladoceran Daphnia magna reared at two temperatures (18 °C/24 °C). MP exposure altered multivariate phenotypes in half of the clones we studied but had no effect on others. In the clones that were affected, individuals exposed to MPs had smaller offspring at both temperatures, and more offspring at high temperature. Differences in response to MP exposure were unrelated to differences in particle uptake, but were instead linked to an upregulation of haemocytes, particularly at high temperature. The clone-specific, context-dependent nature of our results demonstrates the importance of incorporating genetic variation and environmental context into assessments of the impact of plastic particle exposure. Our results identify immunity as an important mechanism underpinning genetically variable responses to MP pollution and may have major implications for predicting consequences of MP pollution

    An experimental test of how parasites of predators can influence trophic cascades and ecosystem functioning

    Get PDF
    AbstractParasites can shape the structure and function of ecosystems by influencing both the density and traits of their hosts. Such changes in ecosystems are particularly likely when the host is a predator that mediates the dynamics of trophic cascades. Here, we experimentally tested how parasite load of a small predatory fish, the threespine stickleback, can affect the occurrence and strength of trophic cascades and ecosystem functioning. In a factorial mesocosm experiment, we manipulated the density of stickleback (low vs. high), and the level of parasite load (natural vs. reduced). In addition, we used two stickleback populations from different lineages: an eastern European lineage with a more pelagic phenotype (Lake Constance) and a western European lineage with a more benthic phenotype (Lake Geneva). We found that stickleback caused trophic cascades in the pelagic but not the benthic food chain. Evidence for pelagic trophic cascades was stronger in treatments where parasite load of stickleback was reduced with an antihelmintic medication, and where fish originated from Lake Constance (i.e., the more pelagic lineage). A structural equation model revealed that differences in stickleback lineage and parasite load were most likely to impact trophic cascades via changes in the composition, rather than overall biomass, of zooplankton communities. Overall, our results provide experimental evidence that parasites of predators can influence the cascading effects of fish on lower trophic levels with consequences on ecosystem functioning.</jats:p

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF

    Quantifying population and clone-specific non-linear reaction norms to food gradients in Daphnia magna

    No full text
    Phenotypic plasticity is normally quantified as a reaction norm which details how trait expression changes across an environmental gradient. Sometime reaction norms are linear, but often reaction norms are assumed to be linear because plasticity is typically quantified as the difference in trait expression measured in two environments. This simplification limits how plastic responses vary between genotypes and may also bias the predictions of models investigating how plasticity influences a population’s ability to adapt to a changing environment. Consequently, there is a pressing need to characterize the real shape of reaction norms and their genetic variability across ecologically relevant environmental gradients. To address this knowledge gap we measured the multi-trait plastic response of 7 Daphnia magna clones from the same population across a broad resource gradient. We used a Random Regression Mixed Model approach to characterize and quantify average and clone-specific responses to resource variation. Our results demonstrate that non-linear models outperformed a linear model for all 4 of the life-history traits we measured. The plastic reaction norms of all 4 traits were similar in shape and were often best described by a non-linear asymptotic model. Clonal variation in non-linear plastic responses was detectable for 3 out of the 4 traits that we measured although the nature and magnitude of variation across the resource gradient was trait-specific. We interpret our findings with respect to the impact that plasticity has on the evolutionary potential of a population in different resource environments.</jats:p

    Data from: Experimental evidence that parasites drive eco-evolutionary feedbacks

    No full text
    Host resistance to parasites is a rapidly evolving trait that can influence how hosts modify ecosystems. Eco-evolutionary feedbacks may develop if the ecosystem effects of host resistance influence selection on subsequent host generations. In a mesocosm experiment, using a recently diverged (<100 generations) pair of lake and stream three-spined sticklebacks, we tested how experimental exposure to a common fish parasite (Gyrodactylus spp.) affects interactions between hosts and their ecosystems in two environmental conditions (low and high nutrients). In both environments, we found that stream sticklebacks were more resistant to Gyrodactylus and had different gene expression profiles than lake sticklebacks. This differential infection led to contrasting effects of sticklebacks on a broad range of ecosystem properties, including zooplankton community structure and nutrient cycling. These ecosystem modifications affected the survival, body condition, and gene expression profiles of a subsequent fish generation. In particular, lake juvenile fish suffered increased mortality in ecosystems previously modified by lake adults, whereas stream fish showed decreased body condition in stream fish-modified ecosystems. Parasites reinforced selection against lake juveniles in lake fish-modified ecosystems, but only under oligotrophic conditions. Overall, our results highlight the overlapping timescales and the interplay of host–parasite and host–ecosystem interactions. We provide experimental evidence that parasites influence host-mediated effects on ecosystems and, thereby, change the likelihood and strength of eco-evolutionary feedbacks

    Boxplots of gene expression-fold values for catsup (<i>F</i><sub>1,77</sub> = 4.253, <i>P</i> = 0.043), pelle (<i>F</i><sub>1,77</sub> = 10.54, <i>P</i> = 0.002), PGRP-LC (<i>F</i><sub>1,77</sub> = 5.898, <i>P</i> = 0.017), peroxiredoxin5 (<i>F</i><sub>1,77</sub> = 11.64, <i>P</i> = 0.001), relish (<i>F</i><sub>1,77</sub> = 5.381, <i>P</i> = 0.023) and serpin27a (<i>F</i><sub>1,77</sub> = 4.075, <i>P</i> = 0.047).

    No full text
    <p>Neunforn results are presented in the left boxplot of each pair (in grey). All depicted genes are significantly different in expression between sites (Table S6a in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0068181#pone.0068181.s001" target="_blank">File S1</a>). Fold-expression values were calculated with dCt values (see main text) and are therefore on a scale defined by reference gene expression.</p
    corecore