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Abstract

Ecological immunology relies on variation in resistance to parasites. Colonies of the bumblebee Bombus terrestris vary in
their susceptibility to the trypanosome gut parasite Crithidia bombi, which reduces colony fitness. To understand the
possible origin of this variation in resistance we assayed the expression of 28 immunologically important genes in foraging
workers. We deliberately included natural variation of the host ‘‘environment’’ by using bees from colonies collected in two
locations and sampling active foraging workers that were not age controlled. Immune gene expression patterns in response
to C. bombi showed remarkable variability even among genetically similar sisters. Nevertheless, expression varied with
parasite exposure, among colonies and, perhaps surprisingly, strongly among populations (collection sites). While only the
antimicrobial peptide abaecin is universally up regulated upon exposure, linear discriminant analysis suggests that the
overall exposure effect is driven by a combination of several immune pathways and further immune functions such as ROS
regulation. Also, the differences among colonies in their immune gene expression profiles provide clues to the mechanistic
basis of well-known inter-colony variation in susceptibility to this parasite. Our results show that transcriptional responses to
parasite exposure can be detected in ecologically heterogeneous groups despite strong background noise.
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Introduction

The outcome of host-parasite interactions is highly variable.

This is because a successful infection results from complex

interactions of both host and parasite genotypes and the molecular

mechanisms coded by these genes, which are additionally

influenced by biotic and abiotic ecological forces. The molecular

mechanisms underlying host resistance to specific parasites are

much better understood in vertebrates (e.g. the MHC-locus [1,2])

than invertebrates. However, a few notable immunological

elements have been identified in invertebrates that might be

involved in specificity of resistance. For example, alternative

splicing of the Dscam transcripts (a gene involved in phagocytosis)

can produce spectacular isoform diversity in Dipterans [3].

Similarly, the ALP1 gene in Anopheles gambiae, which is important

for the mosquito’s response to the parasite Plasmodium falciparum

shows evidence of rapid evolution and high polymorphism [4].

These two genes offer intriguing hints to the mechanistic causes of

variation in invertebrate host immune defense, but their generality

in other species remains to be seen. Variation in infection outcome

could also be a result of differences in either constitutive or

induced expression of genes, even when coding sequences are

relatively monomorphic. The ecological background of specific

host-parasite interactions can dramatically influence the outcome

[5] and presumably may also affect immune gene activity of the

host. To investigate this idea, we explored the variation in

immunological gene expression of bees from different locations in

response to infection.

The buff-tailed bumblebee Bombus terrestris L. and its gut parasite

Crithidia bombi [6] are a model of host-parasite interactions and the

resulting co-evolutionary processes [7]. B. terrestris is a common

and important European pollinator. It lives in colonies headed by

a single queen, which mates only once, producing a genetically

homogeneous group of sister workers. C. bombi is a trypanosome

gut parasite of bumblebees that is transmitted via ingestion of

parasite cells spread in feces by other infected individuals [8]. C.

bombi reduces worker lifespan under harsh conditions but is

otherwise avirulent in workers [9]. Infection does, however,

strongly reduce female fitness by reducing colony establishment

success of young queens in the next generation [9]. Parasite

prevalence under natural conditions is high [10]; hence, the

general effect of C. bombi on the populations of its hosts is likely to

be important. Specific clonal isolates of C. bombi differ in their

infection ability towards different host genotypes [11]. These

specific interactions are also moderated by environmental factors

[12]. Therefore, an investigation of the molecular basis of

interactions between B. terrestris and C. bombi should take into

account both ecological context and genetic identity of hosts and

parasites.

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e68181

CORE Metadata, citation and similar papers at core.ac.uk

Provided by OceanRep

https://core.ac.uk/display/18319681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The insect immune system lacks the lymphocytes of vertebrates

but can nevertheless be very specific in its response to different

challenges [13]. The system contains four main interconnected

immune pathways: the Toll and the Imd pathways (called NF-kB

pathways because they involve nuclear factor -kB -like transcrip-

tion factors); the JNK pathway, which shares recognition

molecules with the Imd pathway; and the JAK/STAT pathway.

Typical responses of the insect immune system include the

secretion of antimicrobial peptides, hemocyte activity (encapsula-

tion or phagocytosis), melanization reactions, and coagulation

[14].

So far, the expression of only a few genes has been assessed

in bumblebees infected with C. bombi (c.f. Table 1). Riddell et al.

[15] found that colonies respond differently to different parasite

strains such that the expression of the antimicrobial peptide

genes varied in relation to which parasite strain infected which

host colony. The most recent study on immune expression of B.

terrestris in response to C. bombi, using an SSH library, found

that immune pathway signaling genes are most prominently up

regulated upon exposure to C. bombi [16]. Based on this

previous work, we now much more broadly surveyed the

expression of genes involved in the constitutive and induced

response when B. terrestris is infected by the trypanosome gut

parasite C. bombi. We were particularly interested in the

standing and induced immunological variation within colonies

as this variation could be important in preventing the spread of

parasites and should reflect natural expression levels as far as

possible. Bumblebee colonies are genetically homogeneous

because of their haplodiplod genetic system and monogamous

mating. Artificially increasing genetic diversity in B. terrestris

colonies by inseminating queens with sperm from multiple males

produced more resistant colonies [17]. Similarly, variation in

immune response within colonies may be adaptive to the colony

as a whole. To capture this variation we specifically targeted

foraging workers. Foragers are the individuals that are most

likely to encounter parasites in the environment and bring them

back to the colony. Focusing on these workers that are the

‘front line’ in parasite encounters we assess how a colony deals

with infection at first encounter. Furthermore, we want to

capture a ‘‘snapshot’’ of the immune response across a colony

rather than an age specific response to parasite exposure. B.

terrestris workers and colonies change in their immunological

profiles as they age [18]. Such a snapshot may reflect the

naturally occurring selective situation better than the fully

controlled experiment, since it describes the effect of an

infection against the naturally varying background.

We also measured immunological gene expression of bees from

two locations that differ in parasite prevalence to assess possible

geographical variation in immune gene expression. Our main

motivation was to explore the standing variation in a typical set of

genes associated with immune defence, to investigate how they

change upon exposure, and whether there are recognizable

statistical patterns in these expression profiles. We were particu-

larly interested in the standing and induced immunological

variation within colonies as this variation could be important in

preventing the spread of parasites and should reflect natural

expression levels as far as possible. The ability to detect responses

to exposure through the biological noise of varied ages that exist in

a bumblebee colony is a valuable tool as these patterns would be at

the core of any immunological-ecological analysis that extends

beyond the usual one-case-in-the-laboratory study and would link

back to the situation in the wild.

Materials and Methods

Bee Collection and Exposure to Crithidia
We collected Bombus terrestris queens from two locations in

Northern Switzerland (Aesch BL and Neunforn TG) in spring

2011 and allowed them to establish colonies in the lab. No

collection permits are needed to collect B. terrestris on private land

in Switzerland. We received permission from private landowners

to collect on their properties. The two collection sites are known to

differ in parasite prevalence, and indications for local coadaptation

in the Bombus-Crithidia system have been found in previous studies

[7]. Over the years 2007 to 2011, on average 5.051% of spring

queens collected in Neunforn and 12.52% of spring queens

collected in Aesch were infected with C. bombi (N between 125 and

393 per year and site, Table S1 in File S1). Upon arrival in the lab,

feces from the queens were checked for Crithidia infections and

only colonies from non-infected queens were used in our

experiments.

Colony enclosures consisted of a central colony chamber and an

outbox where sugar water was provided ad libitum. Pollen was fed

ad libitum within the central colony chamber. Bees could freely

move between these two compartments. We took 12 workers from

each of the outboxes of 8 colonies (4 from each collection location),

not controlled for age, and considered them representative

foragers of a colony. These bees were starved for 2 hours and 6

workers from each group were infected by feeding them 10,000

cells of C. bombi in 10 mL of 50% sugar water. Mixtures of equal

numbers of four different clonal lines of C. bombi were used as an

infective dose to elicit a broad immune response in the bumblebee

host to this parasite (instead of a specific response to one Crithidia

strain only). We fed the other 6 bees from each colony a sham

inoculum, i.e. sugar water without C. bombi cells as a control. No

bees failed to eat the inoculum. The parasite exposure order was

randomized and identical for every colony. 18 hours after

exposure or control treatment, we snap-froze all bees in liquid

nitrogen and stored them at 280uC until use. This time point was

chosen based on previous studies identifying gene expression up

regulation for antimicrobial peptides [16] and high PO activity

and antibacterial activity [19] around 18 hours post Crithidia

exposure.

The four Crithidia strains used in this experiment were isolated

from two spring queens collected in 2008 (one from Neunforn, one

from Aesch) and one spring queen each from 2009 and 2010 (both

from Aesch). Each strain originated from a single infective cell and

was cultured in liquid medium at 27uC and 3% CO2 after isolation

and then cryogenically stored until they were cultured again

immediately before use in exposures [20].

Genetic Analyses
We dissected bee abdomens and disrupted them with 0.5 g

Zirkonium beads at 24 to 210uC using an Omni Bead Ruptor 24

Homogenizer (OMNI International). We then extracted RNA

using the RNeasy Plus Mini kit (Qiagen) in 8 randomized

extraction groups of 10 to 12 samples each. We checked two to

three samples from each extraction group on a 2100 Bioanalyzer

(Agilent Technologies) with the RNA 6000 Nano Kit to confirm

RNA integrity. When RNA profiles indicated degraded samples,

we checked all samples from the same extraction group on the

Bioanalyzer and excluded degraded samples from further analyses.

We measured RNA quantity and purity using a Nanodrop 8000

(ThermoScientific). When contamination was indicated by low

260/280 nm or 260/230 nm ratios, we purified the samples on

RNeasy columns again. We then reverse transcribed 0.7 mg of

RNA from each sample using Quantitect reverse transcription kits

Variation in Bombus Immune Gene Expression
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(Qiagen) and included controls without the reverse transcriptase.

We checked these technical controls using qPCR on an ABI 7500

Fast real-time PCR system with at least two of the reference genes

to ensure absence of genomic DNA. Reverse transcribed samples

were only included in further analysis if control sample amplifi-

cation signals were at least 10 cycles later than the positive

controls. This corresponds to less than 0.1% of the signal in the

reverse transcribed samples being due to contamination with

genomic DNA and was considered acceptable.

After all control steps, 92 samples were left to measure

expression levels of the target genes. We measured expression

using one Fluidigm 96.96 Dynamic Array IFCs on the BioMark

Table 1. Synopsis of immune gene regulation effects found by previous studies in comparison with our results.

Gene Effects found in previous study Effects found in our study
Differences in study design
with respect to our study

hemomucin (pathogen
recognition molecule)

Up regulation upon Crithidia
infection [22]

No significant infection effect Different time point for gene expression
assessment (10 days vs 18 hrs post infection),
workers age controlled

relish (signaling molecule,
Imd pathway)

Tendency for up regulation upon
Crithidia infection [22]

No significant infection effect
but differently expressed
between collection sites

basket (signaling molecule,
JNK pathway)

Down regulation upon bacterial
challenge [21]

No significant infection effect Responses to wounding and bacterial challenge
tested, commercial bumblebee colonies used

TEP A (effector of the
JAK/STAT pathway)

Down regulated upon wounding [21] No significant infection effect

abaecin (AMP) Up regulation upon wounding [21] Significant up regulation upon
infection

Up regulation 12 hours after infection,
strong variation among individuals [16]

Only one colony considered, workers age
controlled, commercial bumblebee colonies used

defensin (AMP) Up regulation 12 hours after infection,
strong variation among individuals [16]

No significant infection effect

Up regulation upon wounding, further
up regulation when including bacterial
challenge [21]

Responses to wounding and bacterial challenge
tested, commercial bumblebee colonies used

GxG interaction of host and parasite
genotypes on expression levels [15]

commercial bumblebee colonies used, effect of
infection on expression levels across colonies not
described

Expression levels dependent on social
environment (up regulation in group
living bees)

commercial bumblebee colonies used, no infection
responses tested

hymenoptaecin (AMP) GxG interaction of host and parasite
genotypes on expression levels [15]

No significant infection effect commercial bumblebee colonies used, effect of
infection on expression levels across colonies not
described

Up regulation upon wounding, further
up regulation when including bacterial
challenge [21]

Responses to wounding and bacterial challenge
tested, commercial bumblebee colonies used

strong variation among individuals [16] Only one colony considered, workers age
controlled, commercial bumblebee colonies used

Expression levels dependent on social
environment (up regulation in group
living bees) [43]

commercial bumblebee colonies used, no infection
responses tested

lysozyme
(bacteriolytic effector)

Expression levels dependent on social
environment (down regulation in bees
kept solitary) [43]

Up regulation upon infection
in Neunforn bees

peroxidase
(ROS regulation enzyme)

Up regulation 1–4 hours after
infection [16]

No significant infection effect
but differences in expression
between sites for several ROS
regulation enzymes

Only one colony considered, workers age
controlled, commercial bumblebee colonies used

transferrin (iron transportation
molecule)

Up regulation after injection with PBS,
bacterial challenge and iron overload,
peak at 6 hours post treatment [44]

No significant infection effect B. ignitus used as study system, expression levels
assessed with Northern blots, only one pool of
three workers assessed

ferritin (iron transportation
molecule)

Up regulation after injection with PBS,
bacterial challenge and iron overload,
peak at 18 hours post treatment [44]

No significant infection effect

serpin27a (PPO cascade
enzyme)

Expression levels dependent on social
environment (up regulation in group
living bees) [43]

Up regulation upon infection
in Neunforn bees

commercial bumblebee colonies used, no infection
responses tested

Colony effects are excluded from the synopsis as they occur in the vast majority of genes.
doi:10.1371/journal.pone.0068181.t001
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System using EvaGreen DNA Binding Dye (Biotium) according to

the Advanced Development Protocol 14 (PN 100–1208 B) by

Fluidigm. The expression values from the Fluidigm 96.96 chip

were measured in triplicates and we used the average of each

technical triplicate as the raw expression value (Ct). We selected

immune genes of interest based on previous studies on immune

gene expression in B. terrestris [15,21,22] and other organisms [23–

26]; the selected genes were: PGRP-S3, PGRP-LC, BGRP1,

BGRP2, hemomucin, pelle, relish, basket, hopscotch, abaecin,

apidaecin, defensin, hymenoptaecin, TEPA, lysozyme3, transfer-

rin, ferritin, jafrac, thioredoxin-dependent peroxide reductase,

peroxiredoxin5, glutathione S-transferase, Dscam, argonaute,

aubergine, serpin27a, catsup, punch, vitellogenin. In this selection,

genes from the receptor, signaling and effector levels of the four

classical insect immune pathways were included as well as general

stress response genes, antiviral genes and genes involved in iron

transport (typically relevant for bacterial infections), reactive

oxygen species regulation and metabolism regulation. NCBI

accession numbers, primer sequences and gene descriptions for

all genes can be found in Table S2 in File S1.

Published primers were used for hemomucin and relish [22],

vitellogenin [27] and for ITPR [21]. We designed all other primers

based on the GenBank sequences (Table S2 in File S1) in Primer3

[28] or Quantprime [29] to be 2062 bp long and have a melting

temperature of 60̊ 61uC with a maximum of 0.5uC difference in

melting temperature between forward and reverse primers. We

tested all primers in real time PCR reactions on several samples

with an annealing temperature of 60uC. Only primers with good

specificity, reliability and amplification efficiency between 1.9 and

2.1 at this setting were used in the final experiment. Further details

on primer tests can be found in Table S3 in File S1 and

information on reference gene use in Table S4 in File S1.

Statistical Analyses
To describe the different patterns in gene expression produced

upon parasite exposure, colony background and collection sites,

we performed two kinds of statistical analyses: first, we assessed the

effects of our experimental factors ‘‘parasite exposure’’, ‘‘site’’ and

‘‘colony’’ on the full set of genes combined and on each gene

individually by M/ANOVA analyses. These analyses identify the

factors and interactions which play an important role for general

immune gene expression patterns and individual genes.

Second, we performed linear discriminant analyses (LDA) for

group separation, i.e. among groups according to each of the

experimental factors which were identified as significant influences

on gene expression patterns by the MANOVA analysis. An LDA

identifies the linear combinations of variables (genes in our case)

that provide the best discrimination of the groups. The number of

linear discriminant (LD) functions identified in a given LDA is

N21 with N being the number of different treatment groups for

the analyzed factor. The N functions are ordered in descending

weight to explain the separation of groups. In graphical

representations, typically values along the two first functions

(‘‘axes’’) are plotted, which together explain more of the separation

than any subsequent function. From the LD coefficients, especially

those pertaining to the first few LD-functions, we can thus tell

which group of genes best describes the group separation. As the

LD analyses introduce different dimensions with axes along which

groups are maximally separated, the LD coefficients are not per se

informative for gene up or down regulation; rather the absolute

value of the (standardized) expression (independent of sign) is

taken and thus indicates the relative contribution of the respective

gene to group separation. LDA is therefore a useful follow-up

analysis when significant effects are found in a MANOVA to

identify the variable combinations that explain the multivariate

effect best, whereas the univariate results of the ANOVA describes

treatment effects on individual response variables, independent of

the other response variables [30]. Finally, to explore the variation

itself, we tested for differences in standard deviation of the dCt

expression values of bees exposed to the parasite versus control

bees, and across collection sites using separate Wilcoxon signed

rank tests.

We performed all statistical analyses in R 2.13.1 [31] using dCt

values as recommended by Yuan et al. [32]. For M/ANOVA

analyses and discriminant analyses, data was Yeo-Johnson

transformed within genes to improve normality and homoscedas-

ticity of the data groups. The lambda values can be found in Table

S5 in File S1. We used classical MANOVA to analyze the overall

effects of the combined gene set and to yield univariate results for

individual genes (base package in R). ‘‘Site’’ and ‘‘exposure’’ status

of each sample were used as fixed factors, ‘‘colony’’ as a nested

factor within site, and the transformed dCt values of the samples as

the response variables. The degrees of freedom varied to a small

extent because of missing data (samples excluded after control

steps or reactions failed on the Fluidigm chip). For the linear

discriminant analyses, we set the Yeo-Johnson transformed dCt

values for expression of all genes as predictor variables and either

exposure status, site of origin or colony as predicted group value

using the MASS package [33]. To assess the prediction quality of

the obtained LD functions, we performed leave-one-out cross-

validation and calculated the percentage of cases classified

correctly.

To improve graph tangibility, we used fold-expression values for

result visualizations as recommended by Schmittgen & Livak [34]:

fold expression = 22dCt. It is important to note that the fold-

expression presented in Fig. 1 is relative to control samples but

Fig. 2 is relative only to reference gene levels.

Results

Parasite Exposure Effects
Exposure to C. bombi alters gene expression overall (Table 2,

S6a). When we analyzed the effect of exposure in the different sites

separately we found that exposure only significantly altered

expression in colonies collected from Neunforn (Table 2, S6b).

However, overall immune regulation patterns show similar

tendencies, suggesting that differences between sites are caused

by differences in the magnitude of gene expression rather than

fundamentally different regulation of these genes in response to

exposure to C. bombi (Fig. S1 in File S1).

Discriminant analysis shows that expression of the genes for the

receptor PGRP-LC, the signaling molecules hopscotch, pelle, and

relish, the antimicrobial peptide abaecin, and the enzymes jafrac

and peroxiredoxin5 combined best describes the differences

between the exposed and non-exposed groups (Table 3).

In univariate ANOVA analyses, a significant effect of C. bombi

exposure was detectable only for abaecin (F1,77 = 11.592,

P= 0.001) (Table S6a in File S1 and Fig. 1), and PGRP-S3 is

expressed differently upon exposure depending on the collection

site of the bees (F1,77 = 4.043, P= 0.048, Table S6 in File S1).

Parasite exposure significantly also increased the variation in gene

expression (V = 290, P= 0.024).

Collection Site Effects
Bees from the two collection sites differ in their expression of

several genes. The enzyme peroxiredoxin5, the signaling molecule

hopscotch, the iron transportation protein ferritin, and the

receptor BGRP1 differed among locations according to LDA

Variation in Bombus Immune Gene Expression
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Figure 1. Gene expression changes upon infection. Presented values are calculated with the 2-ddCt method. This method yields fold-change
values for gene expression between defined sample groups (exposed compared to non-exposed). Error bars are standard errors calculated upon
averaging dCt values within sample groups and transformed to fold change errors with error propagation. The solid line marks the value 1 and
corresponds to no change between groups. Dashed lines mark the values 2 and 0.5, corresponding to doubled and halved gene expression upon
treatment, respectively. Asterisks mark significance of effects as detectable in the univariate outputs of the overall MANOVA (Table S6a in File S1).
Visualization of fold changes within the two collection sites can be found in Figure S1.
doi:10.1371/journal.pone.0068181.g001

Figure 2. Boxplots of gene expression-fold values for catsup (F1,77 =4.253, P=0.043), pelle (F1,77 =10.54, P=0.002), PGRP-LC
(F1,77 = 5.898, P=0.017), peroxiredoxin5 (F1,77 = 11.64, P=0.001), relish (F1,77 = 5.381, P=0.023) and serpin27a (F1,77 = 4.075,
P=0.047). Neunforn results are presented in the left boxplot of each pair (in grey). All depicted genes are significantly different in expression
between sites (Table S6a in File S1). Fold-expression values were calculated with dCt values (see main text) and are therefore on a scale defined by
reference gene expression.
doi:10.1371/journal.pone.0068181.g002
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(Tables 3, S7). When analyzing the expression of genes individ-

ually, the expression of catsup (F1,77 = 4.253, P= 0.043), pelle

(F1,77 = 10.54, P= 0.002), PGRP-LC (F1,77 = 5.898, P= 0.017),

peroxiredoxin5 (F1,77 = 11.64, P= 0.001), relish (F1,77 = 5.381,

P= 0.023) and serpin27a (F1,77 = 4.075, P= 0.047) varied signifi-

cantly across collection locations (Table S6a in File S1). All of these

genes are more strongly expressed in bees from Neunforn colonies

than in bees from Aesch colonies (Fig. 2) but expression variance is

not significantly different between populations (V = 234,

P= 0.247). Neither the parasite exposure effect nor the site

differences give patterns distinct enough to assign individuals

reliably into their groups with the discriminant functions (64.4% of

individuals correctly predicted for site origin and 63.2% for

infection status with a 50% probability of correct assignment by

chance in each case).

Colony Effects
The expression of immune genes varied strongly across colonies

(Table 2). Almost all genes show a significant colony effect

(univariate results in S6a) and the linear discriminant functions

predict colony identity correctly in 55.2% of the cases. This is

considerably higher than the 12.5% probability of assignment to

the correct colony by chance (as there are 8 different colonies),

suggesting that there are distinct immune profiles for each colony

that can be described by the linear discriminators. Again, the main

contributions to these profiles (as assessed by the linear discrim-

inant coefficients) come from the signaling molecules hopscotch

and basket, the receptor molecules PGRP-S3 and PGRP-LC, and

from the enzymes peroxiredoxin5 and jafrac (Table 3). Despite

high intra-colony variation (among workers) colony-specific

profiles are distinguishable (Fig. 3).

Discussion

Starting with our main question, we find that exposure to the

parasite Crithidia bombi significantly influences Bombus terrestris

immune gene expression. The effects of collection site and colony

were more consistent and therefore showed up as stronger effects

in the analyses of variance, but overall differences in immune gene

expression upon parasite exposure remained visible despite

significant variation among colonies, among individuals within

colonies and between the two populations surveyed. This finding is

ecologically (and evolutionarily) relevant, since few studies capture

the breadth of variation in immune responses across a diverse

range of immunologically important genes or account for variation

on this scale. The variability in immunological responses to

parasitism seen here and in previous studies of the same system

[15,22] emphasizes the importance for assessing gene expression

patterns in a variety of genetic backgrounds if general effects are of

interest rather than effects specific for one colony (or one host type

or location). In fact, gene expression responses to C. bombi

infections have been tested before but usually in small numbers of

commercially reared colonies and using relatively few genes

(Table 1). To our knowledge, there is also only one other study to

date that used colonies from wild caught bees [22].

The different immune expression profiles among colonies

(discriminant analysis in Table 3 and visualized in Fig. 3),

irrespective of exposure status, are driven by genes that encode

signaling molecules from the JNK and the JAK/STAT pathways

(in the JNK: kinase basket; in the JAK: kinase hopscotch), receptor

molecules from the NF-kB pathways (PGRP-S3 and PGRP-LC)

and peroxiredoxins (peroxiredoxin5 and jafrac) that have antiox-

idant functions as well as possible immune-regulatory roles in

Drosophila [24]. Given the proposed functions of these genes [35],

this indicates that the main difference between colonies (for

exposed and non-exposed bees combined) can be found at the

level of immune system regulation, in the crosstalk of immune

pathways, and in the regulation of reactive oxygen species (ROS)

for gut homeostasis, rather than on the effector level (e.g. the anti-

microbial peptides). When looked at independently, almost all of

the genes in our set display a colony effect (Table S6 in File S1) but

with our experimental design, we can not say whether this is due to

genetic, epigenetic or environmental effects that have all been

shown to influence infection dynamics of C. bombi in B. terrestris

[12,36–38] and that likely all contribute to differences in immune

gene expression as well. The strong differences among colonies are

important given the well-described genotype-by-genotype pattern

of infection in this system. Some colonies of B. terrestris are infected

by some clones of C. bombi but not others [11,12]. The high

variation we find here among colonies suggests that gene

expression differences of immune genes may be important in

producing this signal of host-parasite specificity.

The genes determining differences across sites (discriminant

analysis in Table 3) are mostly related to homeostasis regulation

(peroxiredoxin5 and the iron transport protein ferritin) and

upstream actors of general immune pathways (the JAK pathway

Table 2. MANOVA results.

Multivariate effects full data set

factor Df Pillai’s F value Num Df Den Df P-value

trace

site 1 0.667 3.382 29 49 ,0.001

infection 1 0.548 2.052 29 49 0.013

site:colony 6 3.806 3.229 174 324 ,0.001

site6infection 1 0.456 1.417 29 49 0.138

Residuals 77

Multivariate effects for site ‘‘Aesch’’

factor Df Pillai’s F value Num Df Den Df P-value

trace

infection 1 0.894 2.323 29 8 0.107

colony 3 2.655 2.65 87 30 0.002

infection6colony 3 2.335 1.211 87 30 0.282

Residuals 36

Multivariate effects for site ‘‘Neunforn’’

factor Df Pillai’s F value Num Df Den Df P-value

trace

infection 1 0.947 4.309 29 7 0.026

colony 3 2.803 4.413 87 27 ,0.001

infection6colony 3 2.202 0.856 87 27 0.712

Residuals 35

MANOVA was carried out on full data set of dCt values after Yeo-Johnson
transformation for each gene and within data subsets according to collection
site of queens. Transformation values can be found in Table S5 in File S1. The
full MANOVA results including univariate effects can be found in Table S6 in File
S1. As colonies are nested within sites, the site-colony interaction depicts the
colony effect. Effects that are statistically significant (P,0.05) are highlighted in
boldface.
doi:10.1371/journal.pone.0068181.t002
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signaling molecule hopscotch and the NF-kB pathway receptor

BGRP1). Interestingly, when testing expression of genes individ-

ually (Table S6a in File S1), other immune functions come into

play: serpin27a (a serine protease inhibitor involved in propheno-

loxidase (PPO) regulation [39]) and catsup (an enzyme involved in

melanin synthesis in Drosophila [40]) are both differentially

expressed across the two populations. The PPO-cascade ultimately

leads to the activation of the melanization reaction [41], therefore

both serpin27a and catsup indicate that the melanization immune

reaction is important for the immunological difference between

our two sites. As with the colony differences above, variation

among sites could be driven by genetic, epigenetic or environ-

mental differences. The sites Neunforn and Aesch differ in Crithidia

infection prevalence (5% vs. 12.5% respectively between 2007–

2011, Table S1 in File S1), which might translate into different

selection regimes and/or cause different immune memory

backgrounds in queens from the two sites and could potentially

explain the differences we see in immune gene expression across

sites.

Exposure to C. bombi altered gene expression even after

conservative statistical analysis (i.e. partitioning variance first into

the site in our hierarchical model leaving less residual variation to

be partitioned into the exposure effect). In particular, we found

that the antimicrobial effector abaecin was generally up regulated

upon exposure (Table S6a in File S1), whereas the overall

significant exposure effect was explained best by a combination of

factors from different levels in the NF-kB and JAK/STAT

pathways together with abaecin and the two peroxiredoxins jafrac

and peroxiredoxin5 (LDA, Table 3). Our results suggest that all

classic insect immune pathways (Toll, Imd, JNK and JAK/STAT)

are involved in the response of B. terrestris to exposure to C. bombi.

Furthermore, it is likely that the genes involved in ROS regulation

are important both in the direct response to infection and in the

general fine tuning of the immune system and gut homeostasis in

B. terrestris - which is reflected in differences between colonies and

sites. Peroxiredoxin5 appears to play an important role in the B.

terrestris immune response to C. bombi. This gene was identified as a

driver of all tested effects (site, exposure and colony, Table 3),

shows generally very high expression levels (Fig. 2), and its

expression differs significantly between sites (Table S6a in File S1).

The general importance of peroxiredoxin5 is supported by the

finding of Ha et al. [42] who found that the regulation of ROS can

be more important for gut immunity than immune pathways

producing antimicrobial peptides.

We did not detect up regulation of the pathogen receptor

hemomucin and the signaling molecule relish as found by Schlüns

et al. [22]. Most likely, this is due to differences in collection sites

and years between these studies, as well as gene expression level

assessment at different time points post infection. Additionally, our

bees were not age-controlled as in the study of Schlüns et al. [22],

in order to capture colony level variation, which adds further

natural variation to gene expression and could mask effects that

might be visible in single age classes. Riddell et al. [16] described

up regulation of the antimicrobial peptides abaecin and defensin

within 12 hours of Crithidia infection. We also found that abaecin

was upregulated 18 hours post infection but did not detect up

Table 3. Linear discriminant analyses for the factors site, infection and colony.

Grouping factor Gene LD coefficient

site peroxiredoxin5 4.969

hopscotch 22.643

ferritin 22.021

BGRP1 1.488

infection PGRP-LC 23.761

status hopscotch 22.4

abaecin 21.732

jafrac 1.541

pelle 1.47

peroxiredoxin5 21.439

relish 1.34

Grouping factor Linear discriminant function Proportion of trace Genes with highest LD coefficients

colony LD1 0.391 basket, peroxiredoxin5, jafrac, hopscotch

LD2 0.223 PGRP-S3, jafrac, basket, hopscotch

LD3 0.149 peroxiredoxin5, hopscotch, PGRP-S3, basket

LD4 0.092 PGRP-LC, peroxiredoxin5

LD5 0.087 basket, PGRP-S3, jafrac

LD6 0.04 hopscotch

LD7 0.018

R Code and the full set of LD coefficients can be found in Table S7 in File S1. Here we present only the genes with a coefficient greater than 1.1 for the site and infection
effects and 2.0 for the colony effect. The magnitude of the linear discriminant coefficients indicates to what extent each factor (in this case: each gene) contributes to
the predictive value of the linear discriminant function. The proportion of trace reports the predictive value of a linear discriminant function relative to the other LD
functions when more than two groups are predicted and (N21) LD functions are generated by the LDA (N being the number of groups). Leave-one-out cross validation
accurately assigned samples to the correct site, infection condition, and colony 64.4%, 63.2%, and 55.2% respectively (as compared to the probabilities of 50%, 50%, and
12.5% as predicted by chance).
doi:10.1371/journal.pone.0068181.t003
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regulation of defensin. This is likely due to the assessment of 8

different colonies at the same time in our study, giving more

general results, while Riddell et al. based their results on a single

colony. Interestingly, Riddell et al. also describe high variation in

immune gene expression among individuals, even within a colony,

suggesting that this may be a common trait of B. terrestris.

These differences between the overall results of similarly

designed studies emphasize again that immune gene expression

has to be measured in a variety of samples with different genetic

and ecological backgrounds before general conclusions can be

drawn. Controlling for sources of natural variation is beneficial

when looking for very specific effects and when trying to isolate

and identify specific causal relationships. But conclusions from

such experiments have to be drawn within this same, narrow

framework. To find general effects, natural variation on all levels

has to be taken into account. Such variation can also be

ecologically important. This is certainly the case in the context

of ecological immunology, considering the need for an evolution-

ary potential in the arms race of host and parasite. Altogether,

studies covering a higher diversity of samples are more likely to be

informative about processes under natural conditions. The fact

that a variety of effects were still visible in our sample set despite

the strong variation among individuals suggests that this method of

gene expression measurement could be useful in diverse ecological

contexts and even in field samples.

In summary, we have shown that the four classical insect

immune pathways leading to the immune responses of melaniza-

tion and antimicrobial peptide production are likely involved in

the response of B. terrestris to the trypanosome C. bombi and that

expression of genes governing immune responses vary greatly

between and even within colonies. The influence of the sample

collection site on both general expression levels and infection

responses adds yet another level to these variation patterns. Gene

expression differed among our collection sites and we suggest that

this should be generally taken into consideration when designing

gene expression experiments using samples from wild populations.

Our study also provides a good example of how microfluidic

devices can facilitate the targeted investigation of gene expression

patterns of non-model organisms like B. terrestris and provide

enough power to identify patterns in gene expression through

ecologically relevant levels of biological noise. Interesting questions

emerging from our findings include the source and the potential

benefits of the strong variation across individuals. We, and others

[16], have found high levels of individual variation in both

constitutive and induced forager immune gene expression.

Whether this variation is in itself adaptive remains to be tested,

for example in the context of an immunological division of labor.

An immunologically heterogeneous environment will likely pose

considerable challenges to parasites that invade, effectively limiting

their available host population to some subset of the colony. While

immunological diversity might increase the number of strains that

are able to infect a colony and establish, it could also limit the total

number of circulating strains to the number of immunological

castes and prevent further strains from accumulating within the

colony. Our finding of important site differences also leads to the

question of possible local adaptation patterns in gene expression.

The data from our diverse array of genes provides useful

indications as to which genes might be interesting targets for

future studies to answer these questions.

Supporting Information

File S1 Contains data about the C. bombi infection prevalence in
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