1,193 research outputs found

    Effects of Dust on Gravitational Lensing by Spiral Galaxies

    Full text link
    Gravitational lensing of an optical QSO by a spiral galaxy is often counteracted by dust obscuration, since the line-of-sight to the QSO passes close to the center of the galactic disk. The dust in the lens is likely to be correlated with neutral hydrogen, which in turn should leave a Lyman-alpha absorption signature on the QSO spectrum. We use the estimated dust-to-gas ratio of the Milky-Way galaxy as a mean and allow a spread in its values to calculate the effects of dust on lensing by low redshift spiral galaxies. Using a no-evolution model for spirals at z<1 we find (in Lambda=0 cosmologies) that the magnification bias due to lensing is stronger than dust obscuration for QSO samples with a magnitude limit B<16. The density parameter of neutral hydrogen, Omega_HI, is overestimated in such samples and is underestimated for fainter QSOs.Comment: 18 pages, 4 figures, ApJ, in pres

    On the Amplitude of Convective Velocities in the Deep Solar Interior

    Full text link
    We obtain lower limits on the amplitude of convective velocities in the deep solar convection zone based only on the observed properties of the differential rotation and meridional circulation together with simple and robust dynamical balances obtained from the fundamental MHD equations. The linchpin of the approach is the concept of gyroscopic pumping whereby the meridional circulation across isosurfaces of specific angular momentum is linked to the angular momentum transport by the convective Reynolds stress. We find that the amplitude of the convective velocity must be at least 30 m s1^{-1} in the upper CZ (r0.95Rr \sim 0.95 R) and at least 8 m s1^{-1} in the lower CZ (r0.75Rr \sim 0.75 R) in order to be consistent with the observed mean flows. Using the base of the near-surface shear layer as a probe of the rotational influence, we are further able to show that the characteristic length scale of deep convective motions must be no smaller than 5.5--30 Mm. These results are compatible with convection models but suggest that the efficiency of the turbulent transport assumed in advection-dominated flux-transport dynamo models is generally not consistent with the mean flows they employ.Comment: 16 pages, 4 figures, accepted to the Astrophysical Journa

    Damped Lyman alpha absorbers at high redshift -- large disks or galactic building blocks?

    Full text link
    We investigate the nature of the physical structures giving rise to damped Lyman alpha absorption systems (DLAS) at high redshift. In particular, we examine the suggestion that rapidly rotating large disks are the only viable explanation for the characteristic observed asymmetric profiles of low ionization absorption lines. We demonstrate using hydrodynamic simulations of galaxy formation in a cosmological context that irregular protogalactic clumps can reproduce the observed velocity width distribution and asymmetries of the absorption profiles equally well. The velocity broadening in the simulated clumps is due to a mixture of rotation, random motions, infall and merging. The observed velocity width correlates with the virial velocity of the dark matter halo of the forming protogalactic clump (v_{wid} ~ 0.6 times v_{vir} for the median values with a large scatter of order a factor two between different lines-of-sight). The typical virial velocity of the halos required to give rise to the DLAS population is about 100 km/s and most standard hierarchical structure formation scenarios can easily account even for the largest observed velocity widths. We conclude that the evidence that DLAS at high redshift are related to large rapidly rotating disks with v_circ >= 200 km/s is not compelling.Comment: 24 pages, LaTeX , 10 postscript figures included; submitted to ApJ. The paper can also be retrieved at http://www.mpa-garching/~haehnel

    A Semisynthetic Fluorescent Sensor Protein for Glutamate

    Get PDF
    We report the semisynthesis of a fluorescent glutamate sensor protein on cell surfaces. Sensor excitation at 547 nm yields a glutamate-dependent emission spectrum between 550 and 700 nm that can be exploited for ratiometric sensing. On cells, the sensor displays a ratiometric change of 1.56. The high sensitivity toward glutamate concentration changes of the sensor and its exclusive extracellular localization make it an attractive tool for glutamate sensing in neurobiology

    Comparison of HIV-1 Genotypic Resistance Test Interpretation Systems in Predicting Virological Outcomes Over Time

    Get PDF
    Background: Several decision support systems have been developed to interpret HIV-1 drug resistance genotyping results. This study compares the ability of the most commonly used systems (ANRS, Rega, and Stanford's HIVdb) to predict virological outcome at 12, 24, and 48 weeks. Methodology/Principal Findings: Included were 3763 treatment-change episodes (TCEs) for which a HIV-1 genotype was available at the time of changing treatment with at least one follow-up viral load measurement. Genotypic susceptibility scores for the active regimens were calculated using scores defined by each interpretation system. Using logistic regression, we determined the association between the genotypic susceptibility score and proportion of TCEs having an undetectable viral load (<50 copies/ml) at 12 (8-16) weeks (2152 TCEs), 24 (16-32) weeks (2570 TCEs), and 48 (44-52) weeks (1083 TCEs). The Area under the ROC curve was calculated using a 10-fold cross-validation to compare the different interpretation systems regarding the sensitivity and specificity for predicting undetectable viral load. The mean genotypic susceptibility score of the systems was slightly smaller for HIVdb, with 1.92±1.17, compared to Rega and ANRS, with 2.22±1.09 and 2.23±1.05, respectively. However, similar odds ratio's were found for the association between each-unit increase in genotypic susceptibility score and undetectable viral load at week 12; 1.6 [95% confidence interval 1.5-1.7] for HIVdb, 1.7 [1.5-1.8] for ANRS, and 1.7 [1.9-1.6] for Rega. Odds ratio's increased over time, but remained comparable (odds ratio's ranging between 1.9-2.1 at 24 weeks and 1.9-2.

    Alignment of the CMS tracker with LHC and cosmic ray data

    Get PDF
    © CERN 2014 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10μm

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams
    corecore