176 research outputs found
Neurophysiology of Skin Thermal Sensations
Undoubtedly, adjusting our thermoregulatory behavior represents the most effective mechanism to maintain thermal homeostasis and ensure survival in the diverse thermal environments that we face on this planet. Remarkably, our thermal behavior is entirely dependent on the ability to detect variations in our internal (i.e., body) and external environment, via sensing changes in skin temperature and wetness. In the past 30 years, we have seen a significant expansion of our understanding of the molecular, neuroanatomical, and neurophysiological mechanisms that allow humans to sense temperature and humidity. The discovery of temperatureâactivated ion channels which gate the generation of action potentials in thermosensitive neurons, along with the characterization of the spinoâthalamoâcortical thermosensory pathway, and the development of neural models for the perception of skin wetness, are only some of the recent advances which have provided incredible insights on how biophysical changes in skin temperature and wetness are transduced into those neural signals which constitute the physiological substrate of skin thermal and wetness sensations. Understanding how afferent thermal inputs are integrated and how these contribute to behavioral and autonomic thermoregulatory responses under normal brain function is critical to determine how these mechanisms are disrupted in those neurological conditions, which see the concurrent presence of afferent thermosensory abnormalities and efferent thermoregulatory dysfunctions. Furthermore, advancing the knowledge on skin thermal and wetness sensations is crucial to support the development of neuroprosthetics. In light of the aforementioned text, this review will focus on the peripheral and central neurophysiological mechanisms underpinning skin thermal and wetness sensations in humans. © 2016 American Physiological Society. Compr Physiol 6:1279â1294, 2016
Acute inflammatory myelopathies
Inflammatory injury to the spinal cord causes a well-recognized clinical syndrome. Patients typically develop bilateral weakness, usually involving the legs, although the arms may also become affected, in association with a pattern of sensory changes that suggests a spinal cord dermatomal level. Bowel and bladder impairment is also common in many patients. Recognition of the clinical pattern of spinal cord injury should lead clinicians to perform imaging studies to evaluate for compressive etiologies. MRI of the spine is particularly useful in helping visualize intraparenchymal lesions and when these lesions enhance following contrast administration a diagnosis of myelitis is made. Cerebrospinal fluid analysis can also confirm a diagnosis of myelitis when a leukocytosis is present. There are many causes of non-compressive spinal cord injury including infectious, parainfectious, toxic, nutritional, vascular, systemic as well as idiopathic inflammatory etiologies. This review focuses on inflammatory spinal cord injury and its relationships with multiple sclerosis, neuromyelitis optica, acute disseminated encephalomyelitis and systemic collagen vascular and paraneoplastic diseases
- âŠ