690 research outputs found

    Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea

    Get PDF
    The rapid increase in development of offshore wind energy in European waters has raised concern for the possible environmental impacts of wind farms. We studied whether harbour porpoise occurrence has been affected by the presence of the Dutch offshore wind farm Egmond aan Zee. This was done by studying acoustic activity of porpoises in the wind farm and in two reference areas using stationary acoustic monitoring (with T-PODs) prior to construction (baseline: June 2003 to June 2004) and during normal operation of the wind farm (operation: April 2007 to April 2009). The results show a strong seasonal pattern, with more activity recorded during winter months. There was also an overall increase in acoustic activity from baseline to operation, in line with a general increase in porpoise abundance in Dutch waters over the last decade. The acoustic activity was significantly higher inside the wind farm than in the reference areas, indicating that the occurrence of porpoises in this area increased as well. The reasons of this apparent preference for the wind farm area are not clear. Two possible causes are discussed: an increased food availability inside the wind farm (reef effect) and/or the absence of vessels in an otherwise heavily trafficked part of the North Sea (sheltering effect

    Physical Response of the York River Estuary to Hurricane Isabel

    Get PDF
    After making landfall on the North Carolina coast on the morning of 18 September 2003, Category 2 Hurricane Isabel tracked northward parallel to and slightly west of the Chesapeake Bay. At Gloucester Point, near the mouth of the York River estuary, strong onshore winds with speeds in excess of 20 m⋅s-1 persisted for over 12 hours and peak winds reached over 40 m⋅s-1, causing a sustained up-estuary wind stress. Storm surge exceeded 2 m throughout most of the lower Chesapeake Bay. A 600 kHz acoustic Doppler current profiler (ADCP), deployed at a depth of 8.5 m off Gloucester Point, provided high-quality data on waves, storm surge, currents, and acoustic backscatter throughout the water column before, during, and after the storm. Pressure and salinity sensors at three additional sites further up the estuary provided information on water surface slope and saltwater excursion up the estuary. A first-order estimate of three terms of the along-channel momentum equation (barotropic pressure gradient, acceleration, and friction) showed that the pressure gradient appeared to be balanced by the wind stress and the acceleration during the storm. The storm’s path and slow speed were the primary causes of the extremely high storm surge relative to past storms in the area.https://scholarworks.wm.edu/vimsbooks/1001/thumbnail.jp

    In search of virus carriers of the 1988 and 2002 phocine distemper virus outbreaks in European harbour seals

    Get PDF
    European harbour seal (Phoca vitulina) populations decreased substantially during the phocine distemper virus (PDV) outbreaks of 1988 and 2002. Different hypotheses have stated that various seals and terrestrial carnivore species might be the source of infection. To further analyse these hypotheses, grey (Halichoerus grypus) and ringed (Phoca hispida) seals, polar bears (Ursus maritimus) and minks (Mustela lutreola) were sampled from the North Sea and East Greenland coasts between 1988 and 2004 and investigated by RT-PCR using a panmorbillivirus primer pair. However, all samples were negative for morbillivirus nucleic acid

    Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus

    Full text link
    Fluid mechanical peristaltic transport through esophagus has been of concern in the paper. A mathematical model has been developed with an aim to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed with the specific aim of exploring some important information concerning the movement of food bolus through the esophagus. The analysis has been carried out by using lubrication theory. The study is particularly suitable for cases where the Reynolds number is small. The esophagus is treated as a circular tube through which the transport of food bolus takes places by periodic contraction of the esophageal wall. Variation of different variables concerned with the transport phenomena such as pressure, flow velocity, particle trajectory and reflux are investigated for a single wave as well as for a train of periodic peristaltic waves. Locally variable pressure is seen to be highly sensitive to the flow index `n'. The study clearly shows that continuous fluid transport for Newtonian/rheological fluids by wave train propagation is much more effective than widely spaced single wave propagation in the case of peristaltic movement of food bolus in the esophagus.Comment: Accepted for publication in Applied Mathematics and Mechanics (AMM), Springe

    Zeezoogdieren in de Eems Evaluatie van de Vliegtuigtellingen van zeezoogdieren tussen oktober 2007 en september 2008

    Get PDF
    Groningen Seaports heeft de ambitie om de Eemshaven te ontwikkelen tot een belangrijk energiecentrum onder de naam "Energy Park Eemshaven". Bovendien worden de Eemshaven en de vaargeul naar de Noordzee verruimd en verdiept. Er komen drie soorten zeezoogdieren in het gebied voor. De meest algemene soort is de gewone zeehond, Phoca vitulina; ook worden er grijze zeehonden Halichoerus grypus en bruinvissen Phocoena phocoena in het gebied gezien. In Brasseur (2007) worden leemtes in de beschikbare kennis van de grijze zeehond en de bruinvis geconstateerd, en tevens over de winterverspreiding van de gewone zeehond. Aangezien de ontbrekende kennis noodzakelijk is om te komen tot een gedegen afweging van de mogelijke effecten van de geplande activiteiten wordt verder onderzoek aanbevolen naar: A. De ruimtelijke en temporele spreiding van de drie soorten in het gebied; B. Migratiegedrag van de drie soorten; C. Voor de zeezoogdieren frequentiespecifieke geluidscontouren van de bouwactiviteiten – met en zonder mitigatie

    Evolution of ozone pollution in China: What track will it follow?

    Get PDF
    Increasing surface ozone (O3) concentrations has emerged as a key air pollution problem in many urban regions worldwide in the last decade. A longstanding major issue in tackling ozone pollution is the identification of the O3 formation regime and its sensitivity to precursor emissions. In this work, we propose a new transformed empirical kinetic modeling approach (EKMA) to diagnose the O3 formation regime using regulatory O3 and NO2 observation datasets, which are easily accessible. We demonstrate that mapping of monitored O3 and NO2 data on the modeled regional O3-NO2 relationship diagram can illustrate the ozone formation regime and historical evolution of O3 precursors of the region. By applying this new approach, we show that for most urban regions of China, the O3 formation is currently associated with a volatile organic compound (VOC)-limited regime, which is located within the zone of daytime-produced O3 (DPO3) to an 8h-NO2 concentration ratio below 8.3 ([DPO3]/[8h-NO2] ≤ 8.3). The ozone production and controlling effects of VOCs and NOx in different cities of China were compared according to their historical O3-NO2 evolution routes. The approach developed herein may have broad application potential for evaluating the efficiency of precursor controls and further mitigating O3 pollution, in particular, for regions where comprehensive photochemical studies are unavailable. © 2022 The Authors. Published by American Chemical Society

    Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere

    Get PDF
    Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison ("OxComp'') was conducted for the IPCC Third Assessment Report (IPCC-TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the "SRES'' A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global-mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC-TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m(-2) on a global and annual average. The lower stratosphere contributes an additional 7.5-9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15-0.17 W m(-2). The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change

    Polar Northern Hemisphere Middle Atmospheric Influence due to Energetic Particle Precipitation in January 2005

    Get PDF
    Solar eruptions and geomagnetic activity led to energetic particle precipitation in early 2005, primarily during the January 16-21 period. Production of OH and destruction of ozone have been documented due to the enhanced energetic solar proton flux in January 2005 [e.g., Verronen et al., Geophys. Res. Lett.,33,L24811,doi:10.1029/2006GL028115, 2006; Seppala et al., Geophys. Res. Lett.,33,L07804, doi:10.1029/2005GL025571,2006]. These solar protons as well as precipitating electrons also led to the production of NO(x) (NO, NO2). Our simulations with the Whole Atmosphere Community Climate Model (WACCM) show that NO(x) is enhanced by 20-50 ppbv in the polar Northern Hemisphere middle mesosphere (approx.60-70 km) by January 18. Both the SCISAT-1 Atmospheric Chemistry Experiment (ACE) NO(x) measurements and Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIP AS) nighttime NO2 observations show large increases during this period, in reasonable agreement with WACCM predictions. Such enhancements are considerable for the mesosphere and led to simulated increases in polar Northern Hemisphere upper stratospheric odd nitrogen (NO(y)) of2-5 ppbv into February 2005. The largest ground level enhancement (GLE) of solar cycle 23 occurred on January 20, 2005 with a neutron monitor increase of about 270 percent [Gopalswamy et al., 29th International Cosmic Ray Conference, Pune,00,101-104,2005]. We found that protons of energies 300 to 20,000 MeV, not normally included in our computations, led to enhanced stratospheric NO(y) of less than 1 percent as a result of this GLE. The atmospheric impact of precipitating middle energy electrons (30-2,500 keV) during the January 16-21, 2005 period is also of interest, and an effort is ongoing to include these in WACCM computations. This presentation will show both short- and longer-term changes due to the January 2005 energetic particle precipitation

    Turbulent Diffusion and Turbulent Thermal Diffusion of Aerosols in Stratified Atmospheric Flows

    Full text link
    The paper analyzes the phenomenon of turbulent thermal diffusion in the Earth atmosphere, its relation to the turbulent diffusion and its potential impact on aerosol distribution. This phenomenon was predicted theoretically more than 10 years ago and detected recently in the laboratory experiments. This effect causes a non-diffusive flux of aerosols in the direction of the heat flux and results in formation of long-living aerosol layers in the vicinity of temperature inversions. We demonstrated that the theory of turbulent thermal diffusion explains the GOMOS aerosol observations near the tropopause (i.e., the observed shape of aerosol vertical profiles with elevated concentrations located almost symmetrically with respect to temperature profile). In combination with the derived expression for the dependence of the turbulent thermal diffusion ratio on the turbulent diffusion, these measurements yield an independent method for determining the coefficient of turbulent diffusion at the tropopause. We evaluated the impact of turbulent thermal diffusion to the lower-troposphere vertical profiles of aerosol concentration by means of numerical dispersion modelling, and found a regular upward forcing of aerosols with coarse particles affected stronger than fine aerosols.Comment: 19 pages, 10 figure
    • …
    corecore