150 research outputs found

    Le temps comme outil

    Get PDF
    Le cadran solaire ou l’horloge hydraulique faisaient partie des instruments de mesure du temps qui rythmaient la vie quotidienne de la plupart des citoyens de l’Antiquité gréco-romaine. Il s’agit de la première civilisation à avoir porté à un haut niveau tant les connaissances techniques que les usages et les besoins liés à ces nouveaux outils. Paradoxalement, la reconnaissance historique de cet extraordinaire bouleversement sociétal est venue très tardivement, bien après que de nombreuses études d’histoire des sciences sur le temps et la formation du monde moderne aient été effectuées à travers le prisme des horloges mécaniques. Cet article montre à quel point l’Antiquité fut, à bien des égards, une époque de bouleversement des mentalités sur le rapport au temps, et comment l’époque moderne s’est lentement ressaisie du sujet.Sundials and waterclocks were part of the time measuring devices that punctuated the daily life of most citizens in Greco-Roman antiquity. It is during this period that technical knowledge and uses and needs linked to those new cultural tools have been highly developed. However, the historical recognition of this extraordinary societal upheaval came very late, after numerous studies on the history of science of time and on the formation of the modern world based upon mechanical time measurement. This article shows to what extent Antiquity was, in many respects, a time of upheaval in upheaval in the way people deal with time on the relationship to time, and how the modern era has slowly taken hold of this subject

    Analysis of the interaction products in U(Mo,X)/Al and U(Mo,X)/Al(Si) diffusion couples, with X = Cr, Ti, Zr

    Get PDF
    International audienceIn the framework of the development of a low 235U enriched nuclear fuel for material testing reactors, γ-U(Mo)/Al based materials are considered as the most interesting prospect. In the process to optimize their composition, addition to both γ-U(Mo) and Al have been proposed. In this paper, the crystallographic composition of Interaction Layers (ILs) in γ-U(Mo,X)/Al and γ-U(Mo,X)/AlSi7 diffusion couples, with X = Cr, Ti, Zr, heat-treated at 600 °C for 2 h, were studied by micro-X-ray diffraction (μ-XRD). When compared to the U(Mo)/Al and U(Mo)/Al(Si) reference systems, all investigated systems involving either Al or Al(Si) as counterparts show interaction products composed of similar phases and related sequences of phase formation. Only relative thicknesses of sub-layers and relative fractions of intermediate phases are correlated with the nature of the X element in the γ-U(Mo,X) alloy. More generally this work shows that γ-U(Mo)/Al and γ-U(Mo)/Al(Si) ILs are now robustly described down to the micrometer scale

    HOLOCENE ENVIRONMENT CHANGES IN THE HACHICHINA WETLAND (GULF OF GABES, TUNISIA) EVIDENCED BY FORAMINIFERA AND OSTRACODA, GEOCHEMICAL PROXIES AND SEDIMENTOLOGICAL ANALYSES

    Get PDF
    Four sediment cores, drilled at Younga and Ouadrane Sebkhas (Hachichina wetland), were selected for micropalaeontological, sedimentological, geochronological and geochemical investigation coupled to hierarchical cluster and correspondence analysis. Our research aimed at reconstructing the past biodiversity, the Holocene palaeoenvironmental evolution and the responsible forcing. Subsurface sediments record four major phases: i) the first one is characterized by poorly to very poorly sorted silts, the dominance of the lagoonal/estuarine ostracod and the lagoonal/marine foraminifera and high values of terrestrial geochemical element ratios, such as K/Al and Fe/Al, which indicate an estuarine lagoon; ii) two major marine transgressions, TR1 and TR2, allowing the settlement of widely opened lagoons towards 7160-8680 and 5070-5520 cal yr BP, are marked by the enhancement of the marine/brackish ostracods and marine foraminifera, the improvement of species number, individuals number and H and E index values and of the marine element ratios such as Cl/Al and Sr/Al; iii) the opening of the lagoon is hampered by the action of drift currents allowing the genesis of sand spit and the settlement of a closed lagoon, towards 2610-3610 cal yr BP, characterized by the enhancement of lagoonal/estuarine ostracods and lagoonal/marine foraminifera and the increase of the individuals number; iv) the dominance of the lagoonal/estuarine ostracods and the lagoonal/marine foraminifera and the decline of the species number and density mark a brackish lagoon, also characterized by very poorly sorted silts transported by uniform suspension, which evolves to the actual sebkha. This evolution, within a global climate alteration context, from an estuarine environment to the present sebkha passing by an opened lagoon, is linked to the complex hydrographic setting of the sebkhas and of the Ouadrane Wadi outlet discharging in the Hachichina wetland

    Distribution of living benthic foraminifera in the northern Chukchi Sea

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Arktos. The final authenticated version is available online at: https://doi.org/10.1007/s41063-018-0062-y.Living (Rose Bengal stained) benthic foraminifera were studied in the topmost sediments of five multi- and box cores collected on the continental shelf, upper and lower slopes, of the Chukchi Sea to provide background information on modern benthic foraminiferal distribution, useful for future studies. Sediment cores were collected during August–September 2015, when the area is seasonally ice-free. Benthic foraminiferal contents in the 63–125 µm and > 125 µm size fractions are discussed in terms of water masses distribution, and sedimentological (grain size) and organic geochemical (total organic carbon, total nitrogen, C/N ratio and δ13Corg) characteristics of the surface sediments. Marine organic carbon-rich clay sediments characterize the faunal microhabitats. Despite relatively high organic carbon contents, standing stocks of living benthic foraminifera are generally low, especially for the 63–125 µm size fraction. This low living stock seems to reflect post-bloom conditions in August and September in the area. The reduced supply of fresh organic carbon also affects faunal microhabitats in the sediment with a concentration of living fauna in the upper 2 cm of the sediment. Over the Chukchi Sea shelf, a relatively mixed upper sediment layer likely due to bioturbation or bio-structures induces a disturbed vertical distribution in the sediment. Corrosive Pacific-derived bottom water over the shelf likely explains the relative importance of agglutinated vs. calcareous fauna in this shallow setting. Our results suggest that, in a post-bloom context, the main environmental control on benthic foraminiferal assemblages in the Chukchi Sea is the nature of the bottom water masses

    Ocean productivity in the Gulf of Cadiz over the last 50 kyr

    Get PDF
    Reconstructions of ocean primary productivity (PP) help to explain past and present biogeochemical cycles and climate changes in the oceans. We document PP variations over the last 50 kyr in a currently oligotrophic subtropical region, the Gulf of Cadiz. Data combine refined results from previous investigations on dinocyst assemblages, alkenones, and stable isotopes ( 18O, 13C) in planktonic (Globigerina bulloides) and endobenthic (Uvigerina mediterranea) foraminifera from cores MD04-2805 CQ and MD99-2339, with new isotopic measurements on epibenthic (Cibicides pachyderma–Cibicidoides wuellerstorfi) foraminifera and dinocyst-based estimates of PP using the new n = 1,968 modern database. We constrain PP variations and export production by integrating qualitative information from bio-indicators with dinocyst-based quantitative reconstructions such as PP and seasonal sea-surface temperature and information about remineralization from the benthic 13C (difference between epi- and endo-benthic foraminiferal 13C signatures). This study also includes new information on alkenone-based SST and total organic carbon which provides insights into the relationship between past regional hydrological activity and PP regime change. We show that PP, carbon export, and remineralization were generally high in the NE subtropical Atlantic Ocean during the last glacial period and that the Last Glacial Maximum (LGM) had lower 13C than the Heinrich Stadials with sustained high PP, likely allowing enhanced carbon sequestration. We link these PP periods to the dynamics of upwelling, active almost year-round during stadials, but restricted to spring-summer during interstadials and LGM, like today. During interstadials, nutrient advection through freshwater inputs during autumn–winter needs also to be considered to fully understand PP regimes.info:eu-repo/semantics/publishedVersio

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    Get PDF
    SignificanceThere is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged 4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute; The Rockefeller University; the St. Giles Foundation; the NIH (Grants R01AI088364 and R01AI163029); the National Center for Advancing Translational Sciences; NIH Clinical and Translational Science Awards program (Grant UL1 TR001866); a Fast Grant from Emergent Ventures; Mercatus Center at George Mason University; the Yale Center for Mendelian Genomics and the Genome Sequencing Program Coordinating Center funded by the National Human Genome Research Institute (Grants UM1HG006504 and U24HG008956); the Yale High Performance Computing Center (Grant S10OD018521); the Fisher Center for Alzheimer’s Research Foundation; the Meyer Foundation; the JPB Foundation; the French National Research Agency (ANR) under the “Investments for the Future” program (Grant ANR-10-IAHU-01); the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (Grant ANR-10-LABX-62-IBEID); the French Foundation for Medical Research (FRM) (Grant EQU201903007798); the French Agency for Research on AIDS and Viral hepatitis (ANRS) Nord-Sud (Grant ANRS-COV05); the ANR GENVIR (Grant ANR-20-CE93-003), AABIFNCOV (Grant ANR-20-CO11-0001), CNSVIRGEN (Grant ANR-19-CE15-0009-01), and GenMIS-C (Grant ANR-21-COVR-0039) projects; the Square Foundation; Grandir–Fonds de solidarité pour l’Enfance; the Fondation du Souffle; the SCOR Corporate Foundation for Science; The French Ministry of Higher Education, Research, and Innovation (Grant MESRI-COVID-19); Institut National de la Santé et de la Recherche Médicale (INSERM), REACTing-INSERM; and the University Paris Cité. P. Bastard was supported by the FRM (Award EA20170638020). P. Bastard., J.R., and T.L.V. were supported by the MD-PhD program of the Imagine Institute (with the support of Fondation Bettencourt Schueller). Work at the Neurometabolic Disease lab received funding from Centre for Biomedical Research on Rare Diseases (CIBERER) (Grant ACCI20-767) and the European Union's Horizon 2020 research and innovation program under grant agreement 824110 (EASI Genomics). Work in the Laboratory of Virology and Infectious Disease was supported by the NIH (Grants P01AI138398-S1, 2U19AI111825, and R01AI091707-10S1), a George Mason University Fast Grant, and the G. Harold and Leila Y. Mathers Charitable Foundation. The Infanta Leonor University Hospital supported the research of the Department of Internal Medicine and Allergology. The French COVID Cohort study group was sponsored by INSERM and supported by the REACTing consortium and by a grant from the French Ministry of Health (Grant PHRC 20-0424). The Cov-Contact Cohort was supported by the REACTing consortium, the French Ministry of Health, and the European Commission (Grant RECOVER WP 6). This work was also partly supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial Research, NIH (Grants ZIA AI001270 to L.D.N. and 1ZIAAI001265 to H.C.S.). This program is supported by the Agence Nationale de la Recherche (Grant ANR-10-LABX-69-01). K.K.’s group was supported by the Estonian Research Council, through Grants PRG117 and PRG377. R.H. was supported by an Al Jalila Foundation Seed Grant (Grant AJF202019), Dubai, United Arab Emirates, and a COVID-19 research grant (Grant CoV19-0307) from the University of Sharjah, United Arab Emirates. S.G.T. is supported by Investigator and Program Grants awarded by the National Health and Medical Research Council of Australia and a University of New South Wales COVID Rapid Response Initiative Grant. L.I. reports funding from Regione Lombardia, Italy (project “Risposta immune in pazienti con COVID-19 e co-morbidità”). This research was partially supported by the Instituto de Salud Carlos III (Grant COV20/0968). J.R.H. reports funding from Biomedical Advanced Research and Development Authority (Grant HHSO10201600031C). S.O. reports funding from Research Program on Emerging and Re-emerging Infectious Diseases from Japan Agency for Medical Research and Development (Grant JP20fk0108531). G.G. was supported by the ANR Flash COVID-19 program and SARS-CoV-2 Program of the Faculty of Medicine from Sorbonne University iCOVID programs. The 3C Study was conducted under a partnership agreement between INSERM, Victor Segalen Bordeaux 2 University, and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study was also supported by the Caisse Nationale d’Assurance Maladie des Travailleurs Salariés, Direction générale de la Santé, Mutuelle Générale de l’Education Nationale, Institut de la Longévité, Conseils Régionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Program “Cohortes et collections de données biologiques.” S. Debette was supported by the University of Bordeaux Initiative of Excellence. P.K.G. reports funding from the National Cancer Institute, NIH, under Contract 75N91019D00024, Task Order 75N91021F00001. J.W. is supported by a Research Foundation - Flanders (FWO) Fundamental Clinical Mandate (Grant 1833317N). Sample processing at IrsiCaixa was possible thanks to the crowdfunding initiative YoMeCorono. Work at Vall d’Hebron was also partly supported by research funding from Instituto de Salud Carlos III Grant PI17/00660 cofinanced by the European Regional Development Fund (ERDF/FEDER). C.R.-G. and colleagues from the Canarian Health System Sequencing Hub were supported by the Instituto de Salud Carlos III (Grants COV20_01333 and COV20_01334), the Spanish Ministry for Science and Innovation (RTC-2017-6471-1; AEI/FEDER, European Union), Fundación DISA (Grants OA18/017 and OA20/024), and Cabildo Insular de Tenerife (Grants CGIEU0000219140 and “Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19”). T.H.M. was supported by grants from the Novo Nordisk Foundation (Grants NNF20OC0064890 and NNF21OC0067157). C.M.B. is supported by a Michael Smith Foundation for Health Research Health Professional-Investigator Award. P.Q.H. and L. Hammarström were funded by the European Union’s Horizon 2020 research and innovation program (Antibody Therapy Against Coronavirus consortium, Grant 101003650). Work at Y.-L.L.’s laboratory in the University of Hong Kong (HKU) was supported by the Society for the Relief of Disabled Children. MBBS/PhD study of D.L. in HKU was supported by the Croucher Foundation. J.L.F. was supported in part by the Evaluation-Orientation de la Coopération Scientifique (ECOS) Nord - Coopération Scientifique France-Colombie (ECOS-Nord/Columbian Administrative department of Science, Technology and Innovation [COLCIENCIAS]/Colombian Ministry of National Education [MEN]/Colombian Institute of Educational Credit and Technical Studies Abroad [ICETEX, Grant 806-2018] and Colciencias Contract 713-2016 [Code 111574455633]). A. Klocperk was, in part, supported by Grants NU20-05-00282 and NV18-05-00162 issued by the Czech Health Research Council and Ministry of Health, Czech Republic. L.P. was funded by Program Project COVID-19 OSR-UniSR and Ministero della Salute (Grant COVID-2020-12371617). I.M. is a Senior Clinical Investigator at the Research Foundation–Flanders and is supported by the CSL Behring Chair of Primary Immunodeficiencies (PID); by the Katholieke Universiteit Leuven C1 Grant C16/18/007; by a Flanders Institute for Biotechnology-Grand Challenges - PID grant; by the FWO Grants G0C8517N, G0B5120N, and G0E8420N; and by the Jeffrey Modell Foundation. I.M. has received funding under the European Union’s Horizon 2020 research and innovation program (Grant Agreement 948959). E.A. received funding from the Hellenic Foundation for Research and Innovation (Grant INTERFLU 1574). M. Vidigal received funding from the São Paulo Research Foundation (Grant 2020/09702-1) and JBS SA (Grant 69004). The NH-COVAIR study group consortium was supported by a grant from the Meath Foundation.Peer reviewe

    Conarachne et Pelecinum: about some Graeco-Roman sundial types

    No full text
    International audienc

    Wasseruhr und Klepsydra - Zeïtmesser der Antike

    No full text
    National audienc
    corecore