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Abstract 12 

 Living (Rose Bengal stained) benthic foraminifera were studied in the topmost sediments of 5 13 

multi- and box cores collected on the continental shelf, upper and lower slopes and of the Chukchi 14 

Sea in order to provide background information on modern benthic foraminiferal distribution, useful 15 

for future studies. Sediment cores were collected during August-September 2015, when the area is 16 

seasonally ice-free. Benthic foraminiferal contents in the 63-125 μm and >125 μm size fractions are 17 

discussed in terms of water masses distribution, sedimentological (grain size) and organic 18 

geochemical (total organic carbon, total nitrogen, C/N ratio and δ13Corg) characteristics of the surface 19 

sediments. Marine organic carbon-rich clay sediments characterize the faunal microhabitats. Despite 20 

relatively high organic carbon contents, standing stocks of living benthic foraminifera are generally 21 

low, especially for the 63–125 μm size fraction. This low living stock seems to reflect post-bloom 22 

conditions in August and September in the area. The reduced supply of fresh organic carbon also 23 

affects faunal microhabitats in the sediment with a concentration of living fauna in the upper 2 cm of 24 

the sediment. Over the Chukchi Sea shelf, a relatively mixed upper sediment layer likely due to 25 
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bioturbation or bio-structures induce a disturbed vertical distribution in the sediment. Corrosive 26 

Pacific-derived bottom water over the shelf likely explains the relative importance of agglutinated vs. 27 

calcareous fauna in this shallow setting. Our results suggest that, in a post-bloom context, the main 28 

environmental control on benthic foraminiferal assemblages in the Chukchi Sea is the nature of the 29 

bottom water masses. 30 
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1. Introduction 44 

 The Arctic Ocean is the smallest and shallowest of the world’s five major oceans but it plays 45 

an essential role in the global oceanic circulation and the regulation of the Earth’s climate system. 46 

Since the last decades the Arctic region has undergone significant and rapid climate changes with a 47 

reduction of sea-ice cover and thickness, an increase in length of sea-ice melt season (e.g. [20, 44, 48 

55]), as well as a rise in sea surface temperatures (SST) and temperatures of water masses flowing 49 

into the Arctic Ocean (e.g. [85, 86, 107, 109]). 50 

 Recent benthic foraminifera in the Arctic Ocean have been investigated by several authors 51 

during the last five decades [9, 37, 41, 42, 50, 64, 77, 78, 79, 94, 102, 103, 104]. The rare studies 52 

which distinguished stained (living) benthic foraminifera from fossil (dead) faunas in Arctic sediments 53 

usually demonstrate a close correlation between the distribution of foraminiferal species and bottom 54 

water masses [9, 37, 42, 64]. In the global Ocean, living benthic foraminiferal studies highlight the 55 

impact of a wide range of processes upon foraminiferal distributions among which are food supply, 56 

salinity, temperature, oxygen, tides and currents, substrate, light penetration, the presence of 57 

seagrass and macroalgae, as well as competition and predation ([61] and references therein). Of 58 

these multiple factors and in addition to bottom water mass characteristics, food availability and 59 

competition for food are thought to control to a high extent foraminiferal associations in the Arctic 60 

Ocean (e.g. [102, 103, 104]). 61 

 In this paper, we present results from living foraminiferal population collected in the 62 

northern sector of the Chukchi Sea, one of the major gateways of the Arctic Ocean. Summer sea-ice 63 

in the western Arctic, especially in the Chukchi Sea, has been rapidly declining during the last 64 

decades (e.g., [19, 20]). Recently, Yun et al. [111] have also shown that the primary production in the 65 

Chukchi Sea presents some decreasing trend for the last decades, probably associated with fresh 66 

water input related to sea-ice melting. However, there are very few studies focusing on the 67 

distribution of benthic foraminifera in this area. Osterman et al. [64] reported the distribution of 68 

benthic foraminifera in the Chukchi Sea but their study was only based on the >125 μm size fraction 69 
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and did not distinguish living from dead faunas. Here, we present the first data on the distribution of 70 

living benthic foraminifera >63 μm in the northern Chukchi Sea, from the continental shelf to the 71 

lower slope and discuss their distributional pattern in view of the local environmental setting. We 72 

believe that the present study is absolutely central for a better knowledge of Arctic foraminiferal 73 

ecology and in future efforts aiming at reconstructing past environments in the area of the Chukchi 74 

Sea. 75 

2. Regional setting 76 

 The Chukchi Sea, one of the largest marginal sea of the Arctic Ocean, extends from the Bering 77 

Strait in the south to the edge of the Canadian basin in the north (Fig. 1). Most of the Chukchi Sea 78 

constitutes a large shallow shelf which deepens progressively towards the north (Fig. 1). To the north 79 

of the shelf system, the Chukchi Borderland includes two subsea formations that extend into the 80 

Amerasian Basin: the Chukchi Plateau and the Northwind Ridge [68]. 81 

 The Chukchi Sea is strongly influenced by fresh Pacific waters entering through the Bering 82 

Strait. The annual volume transport averages about 0.8 Sv northwards [71, 105]. This inflow of fresh 83 

Pacific waters is stronger in summer and relatively weak in winter. Two water masses of Pacific origin 84 

dominate the Chukchi Sea circulation [17]: the Bering Sea Water (BSW) and the Alaskan Coastal 85 

Water (ACW). The ACW is carried by the Alaskan Coastal Current (ACC) into the Chukchi Sea, flowing 86 

northwards along the Alaskan coast with a transport volume of 0.1 Sv. It is a relatively warm, low 87 

salinity and nutrient-poor water mass [40, 106]. The remaining 0.7 Sv of Pacific waters flowing into 88 

the Chukchi Sea is made of BSW, a mixture of Anadyr Water and Bering Shelf Water [17]. These 89 

waters are saltier and richer in nutrients than the ACW [87]. In the western sector of the Chukchi Sea, 90 

the seasonal Siberian Coastal Current (SCC; 0.1 Sv) flows southwards along the coast and deflects 91 

fresh and cold waters into the central Chukchi Sea [101, 105]. Seasonal variations in Pacific water 92 

inflow and sea-ice cover lead to a seasonal cycle of water mass stratification [40, 105]. In summer, 93 

the inflow of Pacific water, especially via the ACC, transports heat into the Chukchi Sea leading to a 94 

stronger stratification of the surface layers [108]. Conversely, water column is well-mixed from fall to 95 
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spring, the inflow of Pacific water becoming cooler and denser due to brine releases during sea-ice 96 

formation [100]. To the north of the Chukchi Shelf, surface circulation is driven by the two main 97 

surface current systems of the Arctic Ocean: the Beaufort Gyre (BG) and the Transpolar Drift (TPD). 98 

Warm and salty Atlantic Intermediate Water (AIW) flows along the Chukchi slope, following the shelf 99 

break from west to east, between approximatively 200 and 900 meters below sea level, and 100 

submerges cold Arctic Deep Water (ADW) which circulates within the deep Arctic basins (Fig.1; [1, 13, 101 

91]). 102 

 The Chukchi Sea is characterized by a first-year ice, making this area particularly sensitive to 103 

the present overall reduction in Arctic sea-ice concentration [18, 24]. Over the satellite record, the 104 

Chukchi Sea has displayed the sharpest downward trends in Arctic sea-ice extent, the September sea-105 

ice edge being now located far north of the continental shelf break [20]. Shimada et al. [85] and more 106 

recently Serreze et al. [83] suggested that the recent reduction in sea-ice concentration was 107 

essentially triggered by the warming of the inflowing Pacific water. Atmospheric temperature and 108 

circulation may also influence the seasonal melting of ice [83]. 109 

 The Chukchi Sea is generally considered as a highly productive region on the edge of the 110 

largely oligotrophic Arctic basin [57] as the result of the inflow of fresh and nutrient-rich Pacific water 111 

into the Chukchi continental shelf. However, a recent study by Yun et al. [111] has shown a 112 

decreasing trend in primary production in the Chukchi Sea during the last decades with relatively 113 

large regional variation. Spatial and temporal variations in the productivity of the Chukchi Sea are 114 

related to changes in duration, thickness and extent of seasonal sea-ice which control light 115 

availability and surface water stratification from sea-ice melting [36, 39, 98, 111]. Mean average 116 

primary productivity in the Chukchi Sea is generally higher over the shallow shelf which experiences 117 

seasonal sea-ice compared to the northern sector of the Chukchi Sea [111]. Primary production rates 118 

over the southern shallow sector of the Chukchi Sea average 80-90 g C m-2 y-1 and progressively 119 

decrease toward the slope (<50 g C m-2 y-1) and over the deep Arctic basin (<20 g C m-2 y-1) [36, 39, 120 

74, 98]. Intense blooms are observed with ice edge retreat [97], in the open water of marginal ice 121 
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zone (MIZ; [65]), starting with an ice algae bloom in May followed by a strong but brief 122 

phytoplankton bloom in June [99]. A recent study also revealed intense phytoplankton blooms 123 

beneath sea-ice in the Chukchi Sea [2]. However, several studies show the negative effect of fresh 124 

water input resulting from sea-ice melting on the nutrient concentration and therefore primary 125 

production in this area [22, 110, 111]. 126 

3. Materials and methods 127 

3.1. Sample collection 128 

This study is based on 9.8 cm diameter multicores and push cores subsampled from boxcores 129 

collected at five stations in the Chukchi Sea during the ARA06C cruise onboard the RV ARAON, 130 

between August 25th and September 9th, 2015 (Fig. 1, table 1). Upon recovery, sediment cores were 131 

sliced onboard every 0.5 cm from the surface down to 2 cm, then every centimetre down to 5 cm. 132 

For each station, one sediment core was used for benthic foraminiferal analysis and another one for 133 

sedimentological and geochemical analyses. Temperature and salinity profiles through the whole 134 

water column, as well as chlorophyll a (Chl a) profiles for the upper water column were measured at 135 

Sts. 01A, 02, 03 and 04 using a conductivity temperature depth (CTD) profiler and a fluorometer 136 

sensor respectively. Sea-ice conditions (drift ice) hindered the deployment of the profiler at St. 05. 137 

3.2. Sedimentological and geochemical analyses 138 

Grain size analysis were conducted at Environnements et Paléoenvironnements Océaniques 139 

et Continentaux (EPOC, France) using a laser diffraction particle size analyser (Malvern Mastersizer 140 

2000 hydro G). Measurements along the top 5 cm of each core were performed on freeze-dried 141 

sediment. Grain size-spectra derived from downcore measurements display a unimodal distribution 142 

at all stations. We therefore consider the median diameter of the particle size distribution D50 as a 143 

reliable measurement of the mean grain size in the sediment cores investigated in the present study. 144 

Sedimentary total organic carbon (TOC) and total nitrogen (TN) contents as well as stable 145 

isotope composition of organic carbon (δ13Corg) were measured at the Korea Polar Research Institute 146 
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(KOPRI, South Korea) using an EA-IRMS system (Flash 2000-Delta V, Thermo Scientific). Total carbon 147 

(TC) and TN were measured on freeze-dried sediment. TOC and δ13Corg were analysed on carbonate 148 

free sediment after HCl (10%) treatment. Finally, TOC was calculated using the following equation 149 

[88]: TOC (%) = [100 - (8.333 * TC)] / [(100 / TOC’) - 8.333]. The analytical error was less than ± 0.1 % 150 

for TN and TOC contents and ± 0.1 ‰ for δ13Corg. TN and TOC are expressed as the mass weight of dry 151 

bulk sediment (wt. %). The C/N ratio was calculated by dividing TOC by TN. 152 

210Pb and 226Ra were measured at EPOC (France) by ϒ spectrometry analytical technique on 153 

freeze-dried sediment of the first 7 cm of core 01A (St. 01A). 210Pb in excess of equilibrium with 226Ra, 154 

210Pbxs, was calculated as the difference between measured 210Pb and 226Ra. 155 

3.3. Living (stained) benthic foraminiferal analysis 156 

Sample treatment and faunal analysis mostly follow the FOBIMO standardized protocol [76]. 157 

Benthic foraminiferal samples were preserved in a 1.5 g L-1 solution of Rose Bengal in 96% ethanol in 158 

order to stain the living endoplasm of benthic foraminifera according to Murray and Bowser [60] and 159 

Walton [96]. This concentration is lower than recommended by the FOBIMO protocol (2 g L-1), but 160 

has been shown to efficiently stain the living organism in many studies [e.g., 25, 28]. The samples 161 

were repeatedly homogenised immediately after staining. For more precision, the real volumes of 162 

sediment were measured [76]. Samples were wet sieved through 63 μm and 125 μm mesh screens. 163 

Benthic foraminiferal analysis was performed on both the 63-125 μm and >125 μm size fractions. All 164 

stained individuals were hand-sorted under wet condition from the surface down to 5 cm for the 165 

>125 μm fraction and from the first centimetre only for the 63-125 μm fraction. The choice of 166 

limiting the analysis of the 63-125 μm fraction to the top first centimetre stems from the extremely 167 

low abundance of living fauna in the 0-1 cm interval of this size fraction at each investigated station 168 

(precluding the existence of <125 μm fauna below the depth of 1 cm) as well as from the time 169 

consuming effort for such low gain. The coloration of Rose Bengal stained specimens considered as 170 

living at the time of sampling may vary among species from light pink to dark red or brownish violet 171 

[76]. Consequently, only specimens with all chambers coloured (except the last one) were considered 172 
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as living. Some non-transparent tests (miliolids or agglutinated taxa) were broken, after 173 

identification, to ensure that protoplasm was stained. All specimens were identified to species levels 174 

if possible following the generic classification of Loeblich and Tappan [51]. 175 

We considered as major species the ones representing at least 5% of the foraminiferal 176 

assemblages. Faunal densities were standardized for a sediment volume of 50 cm3. Living standing 177 

stock represents the total number of living individuals counted per station in each size fraction, 178 

normalized for a 100 cm2 sediment area according to Goineau et al. [31] and Dessandier et al. [25]. 179 

Three biodiversity indices were calculated using the PAST software [38]: the species richness (S, 180 

number of species present in a sample), the Shannon index H’ [84] and the Evenness index E [12]. 181 

4. Results 182 

4.1. Environmental, sedimentological and organic geochemical settings 183 

during the sampling period 184 

At the end of August 2015, sea-ice was very thin and was only found north of the sampling 185 

area (Fig. 1). A continuous northward retreat of the sea-ice edge occurred until the end of September 186 

2015. Therefore, all the investigated stations were free of ice at the time of sampling. 187 

An upper 20 m thick low salinity (<30) surface layer characterizes all stations under the 188 

influence of sea-ice melting (Fig. 2a). Changes toward lower surface salinities (ca. 29.5 to 26.5) and 189 

lower surface temperatures (ca. 1.5 to -1°C) from St. 01A to St. 04 reflect the increasing proximity to 190 

the sea-ice edge. This surface mixed layer overlays the colder and saltier Pacific water with typical 191 

signature of -1.5°C and 33 extending down to 200-250 m over the slope and deep sectors of the 192 

Chukchi Sea (Fig. 2a). This water mass bathes the sediment-water interface at the shallow (110 m) St. 193 

01A (Fig. 2a). The AIW with mean salinities of 35 and temperatures up to 0.8-0.9°C is observed from 194 

200-250 m to ca. 750 m (Fig. 2a), and therefore characterizes the bottom water at the slope Sts. 05 195 

(350 m) and 03 (750 m). The ADW occupies the deeper >750 m water column at Sts. 02 (2100 m) and 196 

04 (2300 m) with typical temperatures <0°C and stable salinity of 35 (Fig. 2a). Chl a profiles within the 197 
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upper water masses of Sts. 01A, 03, 02 and 04 are given in Figure 2b. Chl a concentrations measured 198 

at all stations range from ca. 0.5 to 1.6 μg L-1 within the top 80-100 m water depth. These values are 199 

relatively low when compared to values of Chl a concentrations (about 1-10 μg L-1) commonly 200 

measured in the study area during bloom periods in June and July [2, 65, 97]. Maximum Chl a 201 

concentrations over the shelf (St. 01A; 0.6-0.7 μg L-1) occur in shallower depth, around 20 m water 202 

depth, than over the upper and lower slope stations (Sts. 03, 02, 04) where peak values of 0.6 to 1.6 203 

μg L-1 are found deeper around 60-70 m water depth. 204 

Sedimentological and geochemical analyses in the surface sediment are shown in Figure 3. At 205 

all stations, sediment grain size ranges from clay to fine silt (D50 = 8-12 μm). The shallowest St. 01A 206 

displays high TOC and TN contents (>2.5 and 0.3 wt. %, respectively) compared to other stations (≤ 1 207 

and 0.15 wt. %). The δ13Corg values range from -24 to -21 ‰ and agree with other evidences [36, 62, 208 

63] for a dominant marine origin of the organic matter in sediments of the Chukchi Sea and more 209 

generally in sediments of the Amerasian Arctic. This marine origin is confirmed by the C/N ratio 210 

which, within the top 2 cm of most of the stations, ranges between 6 and 8, revealing typical 211 

signature of marine algae [70]. These ratios also indicate that this marine organic matter was 212 

subjected to limited degradation processes within the water column and the top part of the 213 

sediment layers [56]. C/N ratio values close to 9 on average at St. 01A however suggest that 214 

sediment at this shelf station might contain a terrigenous component, though with limited 215 

contribution to the total organic matter content. 210Pbxs activity profile (Fig. 4) was measured in the 216 

first 7 cm of the sediment in order to highlight possible bioturbation or bio-structures in core 01A 217 

locating on the shelf. The vertical profile of 210Pbxs shows relatively stable values down to 6 cm and a 218 

gently decrease below. 219 

4.2. Living benthic foraminifera 220 

4.2.1. Living standing stock and ecological indices 221 

 In total, 476 living individuals were counted representing 31 species among them 15 are 222 

calcareous and 16 are agglutinated species. Tests of benthic foraminifera, especially calcareous, don’t 223 
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show any mark of alteration or dissolution. Living faunal standing stocks show extremely low values 224 

in the 63-125 μm size fraction, from 0 ind./100 cm2 in the shallowest St. 01A to 11 ind./100 cm2 in St. 225 

03 (Fig. 5a and Fig. 7). For this 63-125 μm fraction, excluding St. 03 (750 m), H’ therefore equals 0 and 226 

E equals 1 for all stations due to the presence of only one living species (Fig. 5c, d). Benthic 227 

foraminiferal standing stocks and diversities S are generally higher in the >125 μm size fraction, 228 

ranging from 8 to 297 ind./100 cm2, and from 3 to 17 species, respectively, with higher values 229 

generally measured at the shallowest stations (Fig. 5a, b). Lowest standing stocks are observed at the 230 

deepest stations (8 and 18 ind./100 cm2 at Sts. 02 and 04, respectively). H’ and E values do not 231 

indicate any clear correlation with water depth (Fig. 5c, d). Both indices are minimal at the mid-depth 232 

station (St. 03, 750 m). 233 

4.2.2. Relative abundances of the dominant species 234 

 Because of the extremely low living standing stock in the 63-125 μm size fraction, relative 235 

abundances and comparison between size fractions should be considered with great care. Except at 236 

St. 03, only calcareous taxa are found in the 63-125 μm fraction (Fig. 6a). In the >125 μm fraction, the 237 

contribution of agglutinated taxa is decreasing with increasing water depth, ranging from 40 % at St. 238 

01A to 0 at Sts.02 and 04 (Fig. 6b). With the exception of the deepest St. 04 where Oridorsalis tenerus 239 

shows high relative abundances in both size fractions, species assemblages are drastically different 240 

between size fractions (Fig. 7). Some species observed in the small size fraction are however worth 241 

mentioning: Parafissurina tectulostoma and O. tenerus are found on the upper slope (Sts. 05 and 03) 242 

and in the lower slope (Sts. 02 and 04). Higher standing stocks in the >125 μm fraction support a 243 

more robust description of the species assemblages. Elphidium excavatum subsp. clavatum and 244 

Nonionellina labradorica, both calcareous species, are the dominant taxa (45 and 13 %, respectively) 245 

in shelf sediments (St. 01A, Fig. 7b). Subordinate agglutinated species consist of Saccammina sp., 246 

Labrospira crassimargo, Nonionina scapha var. arenacea and Recurvoïdes contorta. Upper and lower 247 

slope stations are characterized by distinct foraminiferal populations. Foraminiferal assemblages at 248 

upper slope stations are both overwhelmingly (>60 %) dominated by Cassidulina neoteretis. 249 
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Elphidium excavatum subsp. clavatum and Lagenammina arenulata are present (27 % and 7 %, 250 

respectively), at St. 05 (350m) though both species are absent in the other upper slope St. 03 (750 251 

m). In both deepest Sts. 02 and 04, Ioanella tumidula and Triloculina oblonga are common to 252 

abundant (Fig. 7b). Oridorsalis tenerus is dominant (64 %) at the deepest station (St. 04) but not 253 

observed at St. 02. 254 

4.2.3. Vertical distribution 255 

 The vertical distribution (0 to 5 cm) of living foraminifera was analysed for the >125 μm size 256 

fraction only (Fig. 8). Benthic foraminifera are generally concentrated in the upper 2 cm of the 257 

sediment with density reaching up to 133 and 386 ind./50 cm3 in the top-most layer (0-0.5 cm) of Sts. 258 

03 and 05, respectively. At the shallowest St. 01A, the highest faunal density is also observed in the 259 

top-most layer with 47 ind./50 cm3 and abundant agglutinated species, among which L. crassimargo 260 

and N. scapha var. arenacea. However, contrary to other stations, living faunas are found down to 5 261 

cm, with E. excavatum subsp. clavatum reaching up to 28 ind./50 cm3 in the 4-5 cm layer. 262 

Nonionellina labradorica shows its higher abundances between 1 and 2 cm (12 ind./50 cm3). 263 

5. Discussion 264 

 In most studies where benthic foraminifera from 63-125 μm and >125 μm size fractions are 265 

analysed, the standing stocks are generally much higher (e.g. [33]). In the Arctic, particularly under 266 

permanent sea-ice cover, most of the benthic foraminifera are smaller than 125 μm [78, 102, 103]. 267 

However, in this study, the living standing stock in the 63-125 μm size fraction is extremely low and 268 

always much lower than in the >125 μm size fraction. This might be due to either a methodological 269 

bias related to the staining of the living foraminifera or to environmental conditions. At all stations, 270 

the sediment is extremely fine (Fig. 3) and therefore very cohesive which might prevent the good 271 

penetration of Rose Bengal staining in the sediment. Although we cannot completely rule out this 272 

hypothesis, the occurrence of well stained individuals in the >125 μm size fraction suggests that the 273 

extremely low density in the 63-125 μm fraction is a consequence of environmental conditions rather 274 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



12 
 

than a methodological bias. Density of dead fauna was assessed on the top centimetre (0-1cm) of the 275 

sediment for the 63-125 and >125 μm fractions in order to test whether the distribution of living 276 

fauna according to the size fractions is representative of mean average conditions in the studied 277 

area. Living and dead faunal densities are shown for both fractions in Figure 9. Not surprisingly given 278 

the time interval represented by the accumulation of dead fauna (25 years at least considering a 279 

minimal sedimentation rate of 0.4mm/yr [23]), the density of the dead fauna is much higher than 280 

that of the living fauna, especially for the 63-125 μm size fraction. Furthermore, the density of the 281 

dead fauna shows highest values in the lower slope Sts. 02 and 04 while the living fauna are more 282 

abundant in the upper slope Sts. 03 and 05. The remobilization and transport of dead fauna by active 283 

currents from shallow to deep settings [23] as well as taphonomical processes leading to the 284 

dissolution of calcareous forms that dominate the living assemblage at shallow stations [e.g., 89] 285 

might in part explain the observed discrepancy. More presumably, we consider that the sampling 286 

period (late August to early September 2015) is not typical of normal late summer environmental 287 

conditions in the Chukchi Sea and/or that the peak production of benthic foraminiferal species which 288 

contribute to the 63-125 μm fraction does not occur over late summer. Our data does not permit us 289 

to deal further with this issue. Therefore, and despite the relatively high proportion of dead 290 

foraminifera in the 63-125 μm fraction, most of the following discussion on the distribution of the 291 

living benthic foraminifera will be based on the >125 μm fraction only. 292 

5.1. Density and diversity of living benthic foraminifera related to 293 

primary production 294 

 Except at St. 01A, where bottom temperature and salinity are -1.5°C and 33.1 respectively, 295 

these two parameters display similar values at all other stations, ranging from 0.2 to -0.5°C and close 296 

to 35.0 (Fig. 2a). Wollenburg and Mackensen [102, 103] have shown that among the various factors 297 

controlling the distribution of benthic foraminifera in the Arctic, bottom water mass characteristics 298 

are of minor importance. Likewise, given the equivalent grain size measured at all stations (clay to 299 

fine silt), we do not consider this sedimentological parameter as influential in explaining the 300 
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observed heterogeneities in species assemblages among stations (Fig. 3). The distribution of living 301 

benthic foraminifera is well known to be influenced by biotic and abiotic factors, among which the 302 

oxygen concentration and food supply are the most important [45, 102, 103]. TOC values in the 303 

studied upper and lower slope stations are fairly stable, ranging from 0.6 to 1.2 %, and agree with 304 

values found by Husum et al. [41] for the central Arctic. Over the shelf (St. 01A), TOC reaches 2.6 %. 305 

However, the standing stock at St. 01A is not particularly high compared with other stations, pointing 306 

out the influence of other parameters than organic matter content alone. Recent studies suggest 307 

that the quality and origin of the organic matter delivered to the seabed play a major role in 308 

controlling benthic foraminiferal ecology [25, 28, 29, 32, 46, 75]. The major food source for benthic 309 

foraminifera in the open ocean is organic matter derived from primary production. In the Arctic 310 

Ocean, food availability and benthic foraminiferal standing stock, composition and vertical 311 

distribution in sediments will greatly depend on sea-ice seasonality (e.g., [41, 102, 103]). In the 312 

Chukchi area, the marine primary production, and thus the export of organic matter to bottom 313 

sediments, is essentially controlled by nutrients availability, seasonal sea-ice extent (e.g., [93]), light 314 

penetration and fresh water input variability [22, 111], these parameters being strongly related. 315 

Many studies suggest that nitrogen availability through nitrate supply tends to control and limit 316 

primary productivity in seasonally ice-covered waters of the Arctic Ocean [58, 74, 92]. Tremblay et al. 317 

[93] showed a clear difference between the Chukchi shelf and Chukchi borderlands in terms of 318 

nitrate maximum at the surface due to perennial stratification in the interior sector. Yun et al. [111] 319 

also showed that primary production is highest in the southern Chukchi Sea and decreases 320 

northward as a result of sea-ice cover and meltwater input mainly. In this study, abundance and 321 

diversity are lower in the deepest stations (Sts. 02 and 04) that in the shelf and upper slope stations 322 

(Sts. 01A, 05 and 03). The living foraminiferal density in the >125 μm size fraction at all stations (Fig. 323 

8) remains however low (from 4 ind./50cm3 at St. 02 to 454 ind./50cm3 at St. 05 for the upper 324 

centimetre) in comparison to other studies in Arctic environments. Wollenburg and Mackensen [103] 325 

reported living benthic foraminiferal densities in the same size fraction ranging from 18 ind./50cm3 in 326 
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the deep Nansen Basin to 1044 ind./50cm3 on the Yermak Plateau. Husum et al. [41] using a slightly 327 

smaller size fraction (100 μm-1 mm) provided density values of 0 ind./50cm3 on the Alpha and Gakkel 328 

Ridge and more than 6300 ind./50cm3 on the Kara Sea continental margin. The north of the Chukchi 329 

Sea is covered by sea-ice 8 months a year from November to June [e.g., 82, 90]. Long sea-ice cover 330 

leads to a generally low primary productivity and organic matter flux reducing the living benthic 331 

foraminiferal standing stock and the faunal habitat depths in the sediment [11, 69]. Although the 332 

sea-ice cover at the time of sampling was scarce for the northernmost deep stations, this may, at 333 

least partly, explain the standing stock differences between the relatively rich outer-shelf, upper 334 

slope stations and the very poor lower slope stations (Fig. 7). During summer in the Chukchi Sea, 335 

heterotrophic processes take over autotrophic processes following nutrient depletion by the spring 336 

bloom [39, 99]. This feature induces a seasonal shift in the quantity and the quality of the vertically 337 

exported biogenic matter. The biogenic matter exported is high and fresh in spring while it becomes 338 

lower and more degraded (faecal pellets, aggregates, detritus) in summer, especially during August 339 

and September [99]. Chlorophyll data measured at the deepest stations of the Chukchi Sea, however, 340 

show a relatively well-developed subsurface Chlorophyll maximum (SCM) centred around 60 m with 341 

chl a values reaching 1.6 μg L-1. The depth and values of this SCM agree with the results of Coupel et 342 

al. [22] for the Chukchi area and Martin et al. [54] for other Arctic seas. Therefore, surface or 343 

subsurface productivity might not be the only limiting factor there.  344 

5.2. Species distribution as a proxy of environmental changes 345 

 In the 5 studied cores, distinct living benthic foraminiferal assemblages are observed 346 

according to the following bathymetric ranges as: outer shelf (110 m water depth), upper slope (350-347 

750 m) and lower slope (2100-2300 m). The outer shelf assemblage is found where organic matter 348 

content is the highest (Fig. 3). The most abundant species in this assemblage are E. excavatum subsp. 349 

clavatum, N. labradorica, L. crassimargo and R. contorta. Elphidium excavatum subsp. clavatum is a 350 

typical shelf species [61] and was found abundant in surface sediment over the Chukchi shelf [64] 351 

although this cited study did not distinguish living from dead fauna. Other species in this assemblage 352 
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such as N. labradorica are either linked to elevated fluxes of fresh phytodetritus [14, 21, 67] or 353 

associated to high contents of buried organic matter [21]. Phytoplankton bloom in this area typically 354 

occurs in late June-early July [2], two months before the sampling period. High TOC (Fig. 3) and the 355 

vertical distribution of N. labradorica at this station (Fig. 8) rather suggest the latter case in the 356 

present study. From a study conducted over the Kamchatka slope, Bubenshchikova et al. [11] 357 

described N. labradorica as an abundant intermediate infaunal species in the sea-ice free 358 

mesotrophic zone. The benthic foraminiferal population observed at the shelf St. 01A is made of 40 359 

% of agglutinated specimens, peaking to 70 % in the topmost centimetre (Fig. 8). This 360 

calcareous/agglutinated assemblage is typical of shallow Arctic and subarctic environments [41, 49, 361 

50, 64, 104]. In the Chukchi Sea, several authors observed undersaturated seawater pCO2 during the 362 

sea-ice free period across the shelf [3, 4, 5, 15, 16, 30, 59, 66, 81]. In contrast, subsurface seawater 363 

pCO2 values were highly oversaturated [3, 6]. These observations are indicative of an efficient 364 

organic carbon remineralization in the subsurface waters and into the sediment of the Chukchi 365 

continental shelf. Organic carbon remineralization increases pCO2 and decreases the pH. This 366 

process contributes to the acidification of interstitial waters making them further corrosive and 367 

leading to partial carbonate dissolution [7, 8] which could explain the recorded high abundance of 368 

agglutinated species on the shelf sediment of the Chukchi Sea. 369 

 The upper slope assemblage is highly dominated by C. neoteretis. Elphidium excavatum 370 

subsp. clavatum is dominant only on the upper slope St. 05. Cassidulina neoteretis is a shallow 371 

infaunal species associated to AIW in the Arctic [41, 42, 64] and typically related to fresh input of 372 

phytodetritus [34, 53]. Additionnaly, and although based only on quick visual examination of dead 373 

faunas, we notice that C. neoteretis that is dominating the living fauna at Sts. 03 and 05 is completely 374 

absent in the dead fauna. Cassidulina, a typically opportunistic genus, is however generally more 375 

abundant in dead assemblages than in living populations in various settings of the world ocean as a 376 

consequence of high production rates and short living time [26]. Our paradoxical observations may 377 

be related to dissolution in sediment by corrosive interstitial water or active transport by bottom 378 
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currents directly after the death of the organisms as already suggested earlier to explain higher 379 

density of the dead fauna at deep stations. The presence of this species, indicator of modified 380 

Atlantic Water/Arctic Intermediate Water [43], in the living fauna only may also suggests very recent 381 

changes in the local hydrology. Elphidium excavatum subsp. clavatum was observed by Korsun and 382 

Hald [47] in the Tempelfjorden in Svalbard and seems to be related to increasing glacier meltwater 383 

discharge. It is a widespread species in Arctic shelves with ability to colonize harsh environments 384 

(e.g., [21]). Its presence in the living fauna (Fig. 7b and 8 may therefore suggest high meltwater 385 

supply from sea-ice at the location of Sts.01A and 05. 386 

 The deep assemblage is essentially made of the surface infaunal species O. tenerus and I. 387 

tumidula. Ioanella tumidula dominates St. 02 at 2100 m while O. tenerus is absent. Oridorsalis 388 

tenerus is overwhelmingly dominant at the deepest St. 04. Note that O. tenerus is the only species 389 

found at both Sts. 02 and 04 in the 63-125 μm fraction. Oridorsalis tenerus and I. tumidula (as 390 

Eponides tumidulus) were found in the same biofacies by Ishman and Foley [42] at water depths 391 

greater than 1300 m in the Canada Basin. Husum et al. [41] also found these species in the 1300-392 

3700 m water depth interval, on the permanently ice-covered Lomosov Ridge and Alpha Ridge in 393 

addition to the seasonally ice-free Nansen Basin. They are therefore referred as typically oligotrophic 394 

species. Wollenburg and Mackensen [102] however suggest that O. tenerus is better adapted to 395 

more oligotrophic conditions. Lower TOC values at St. 04, where O. tenerus is dominant, compared to 396 

St. 02 well supports this idea. 397 

The vertical distribution of the living fauna (Fig. 8) shows sharp decrease below the first 398 

centimetre with the topmost layer being normally the richest, except at St. 02 where no living 399 

individuals where found in this upper layer. This is very consistent with other studies on the 400 

distribution of living benthic foraminifera in the Arctic. Wollenburg and Mackensen [103] found living 401 

individuals down to 8 cm while in the central Arctic most of the fauna was concentrated in the upper 402 

2 cm according to the very low flux of organic matter in this permanently ice-covered area. The 403 

sampling period during post-bloom conditions, as well as the relatively low TOC values measured in 404 
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sediments of the upper and lower slope stations suggest that a weak input of labile organic matter in 405 

this sector of the Chukchi Sea induced the observed shallow (upper 2 cm) habitat of benthic 406 

foraminifera. The shallow St. 01A is characterized by a subsurface peak in foraminiferal density 407 

between 1 and 3 cm with N. labradorica, an intermediate infaunal species [61] as the dominant taxa. 408 

The presence of E. excavatum subsp. clavatum, a shallow infaunal species between 3 and 5 cm at St. 409 

01A suggests local bioturbation or bio-structures. The occurrence at this station of several macro-410 

organisms such as bivalves and echinoderms as well as a homogeneous 210Pbxs activity profile (Fig. 4) 411 

showing relatively stable values down to 6 cm confirms the possible bioturbation or bio-structure 412 

systems created by the activity of macro-/meio-fauna. On one hand, bioturbation might explain the 413 

unusual occurrence of E. excavatum subsp. clavatum deeper than expected. On the other hand, the 414 

presence of bio-structures leads to particular biochemical conditions and biotic associations which 415 

offer microhabitats favourable for the development of benthic foraminifera traditionally found in 416 

another range of sediment depth [52] such as E. excavatum subsp. clavatum. 417 

 418 

6. Conclusions 419 

 This study aims to describe and understand the distribution of living benthic foraminifera in 420 

the northern Chukchi Sea continental shelf, upper and lower slope, an Arctic environment strongly 421 

impacted by recent climate changes. According to our observations, various environmental factors 422 

may influence the benthic foraminiferal abundance, composition and vertical distribution in the 423 

Chukchi Sea.  424 

(1) The distributional patterns of living faunal assemblages seems to reflect the nature of the 425 

bottom water masses according to the three bathymetric sectors of the Chukchi Sea 426 

investigated in the present study. Over the shelf bathed by the corrosive Pacific water 427 

agglutinated specimens are abundant. Here, the assemblage is dominated by the calcareous 428 

species E. excavatum subsp. clavatum and N. labradorica and the agglutinated species L. 429 

crassimargo and R. contortus. Over the Chukchi slope, under the influence of Atlantic waters, 430 
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the assemblage is overwhelmingly dominated by C. neoteretis. Benthic foraminiferal 431 

populations in deep stations bathed by Arctic water are dominated by I. tumidula and O. 432 

tenerus.  433 

(2) The overall low faunal diversity and standing stock at all stations may reflect post-bloom 434 

conditions in late August and early September in the area, and hence reduced supply of fresh 435 

organic matter to the sea floor. Living standing stocks are much lower in the 63-125 μm size 436 

fraction than in the >125 μm fraction. Although a methodological bias cannot be completely 437 

excluded, we believe that the conditions at the time of sampling were oligotrophic with 438 

highly degraded organic matter that does not favour the presence of opportunistic species 439 

often found in the small fraction.  440 

(3) Our results suggest that in the context of post-bloom conditions, the lower quality of 441 

exported organic matter might also explain the observed, exclusively shallow (topmost 442 

centimetre) habitat of living benthic foraminifera in sediments of the upper and lower slope. 443 

The apparently deepest habitat (down to 5 cm) found over the shelf is probably related to 444 

intense bioturbation or bio-structures in this shallow setting, as evidenced by the presence of 445 

typical surface dwellers down in the sediment column.  446 

 Our study brings several hypothesis on the ecology and preservation of benthic foraminiferal 447 

fauna in the northern Chukchi Sea, confirming the key information that this species group can 448 

provide about modern and past changes in Arctic circulation and climate. 449 

  450 
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Table and figure captions 721 

Table 1 Station numbers, types, locations and water depths 722 

Fig.1 Bathymetric map of the Chukchi Sea with sampling locations, main features of the surface and 723 

intermediate circulation, and mean sea-ice extent in August 2015 (white line) and September 2015 724 

(white dotted line). The circulation is adapted from Rudels and al. [73]. For the surface waters, low-725 

salinity currents derived from Pacific water are indicated by green arrows and cold polar and arctic 726 

currents by blue arrows. Circulation of intermediate waters is shown by black dotted arrows. AC: 727 

Anadyr Current; ACC: Alaskan Coastal Current; BG: Beaufort Gyre; BSW: Bering Sea Water; SCC: 728 

Siberian Coastal Current; TPD: Transpolar Drift. Monthly sea-ice extent is from NSIDC [27] and 729 

bathymetry is from IBCAO, WGS84 730 

Fig.2 Water column profiles of temperature, salinity (a) and chlorophyll a (b) at Sts. 01A, 03, 02 and 731 

04. Pacific water mass is underlined in green, Atlantic Intermediate Water in red and Artic Deep 732 

Water in blue 733 

Fig.3 Downcore (topmost 2 cm) profiles of median sediment grain size D50 (μm), total organic carbon 734 

content (TOC, wt. %), total nitrogen content (TN, wt. %), δ13Corg (‰ VPDB) and C/N ratio at all 735 

stations 736 

Fig.4 Downcore 210Pbxs profile measured at St. 01A 737 

Fig.5 Ecological indices describing foraminiferal assemblages at all stations for the 63-150 μm 738 

(topmost centimetre, grey bars) and >125 μm size fractions (topmost 5 cm, black bars). (a) 739 

Foraminiferal abundances; (b) Number of species S; (c−d) Shannon (H’) and Evenness (E) indices 740 

Fig.6 Proportion of agglutinated versus calcareous species at all stations for the 63-125 μm size 741 

fraction (a) and the >125 μm size fraction (b) 742 

Fig.7 Foraminiferal relative abundances of major species (>5% of the total living benthic foraminifera 743 

assemblage) for the 63-125 μm (a) and the >125 μm (b) size fractions. Living standing stock (number 744 

in the central area of the pie charts) are standardized for a surface area of 100cm². Species 745 

representing less than 5 % are grouped in the category “others” 746 
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Fig.8 Vertical distribution of major species of living benthic foraminifera (>125 μm) in terms of faunal 747 

density (ind./50cm3) in the topmost 5 cm 748 

Fig.9 Density of living (blue) and dead (orange) benthic foraminifera in the first centimetre of 749 

sediment for each station and each size fraction. 750 
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Table 1 Station numbers, types, locations and water depths 

Cruise 
Sample 

station 

Sampling 

device 
Longitude Latitude 

Water 

depth (m) 

ARA06C 01A Multicorer -166.44 73.62 110 

ARA06C 02 Boxcorer -161.17 76.60 2100 

ARA06C 03 Multicorer 181.01 76.33 750 

ARA06C 04 Multicorer -173.23 78.84 2300 

ARA06C 05 Boxcorer 179.50 75.60 350 
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Appendices 

Appendix 1 Taxonomic reference list of major taxa 

Cassidulina neoteretis Seidenkrantz, 1995 

Elphidium excavatum subsp. clavatum Cushman, 1930 

Ioanella tumidula (Brady, 1884) 

Labrospira crassimargo (Norman, 1892) 

Laevidentalina elegans (d’Orbigny, 1846) 

Lagenammina arenulata (Skinner, 1961) 

Quinqueloculina arctica Cushman, 1933 

Nonionellina labradorica (Dawson, 1860) 

Nonionina scapha var. arenacea Heron-Allen and Earland, 1922 

Oridorsalis tenerus (Brady, 1884) 

Parafissurina tectulostoma Loeblich and Tappan, 1953 

Psammophaga sp. Arnold, 1982 

Recurvoides contortus Earland, 1934 

Saccammina sp. Sars, 1869 

Triloculina oblonga (Montagu, 1803) 

  



Appendix 2 Plate with SEM pictures of major species (>125 μm) 

a-b : Cassidulina neoteretis; c-d : Elphidium excavatum subsp. clavatum; e : Laevidentalina elegans; f : 
Ioanella tumidula (ombilical side); g : Ioanella tumidula (spiral side); h-I : Labrospira crassimargo; j : 
Lagenammina arenulata; k : Nonionellina labradorica; l : Nonionina scapha var. arenacea; m : 
Triloculina oblonga; n : Recurvoïdes contortus; o-p : Saccammina sp.; q : Quinqueloculina arctica 



Appendix 3 

Table 2. Number of major living (stained) benthic foraminiferal species (representing >5% in at least 
one sample), number and densities of total living and dead fauna for each station and each size 
fraction.  

Station 01A 02 03 04 05 

Size fraction 63-125 
μm 

>125 
μm 

63-125 
μm 

>125 
μm 

63-125 
μm 

>125 
μm 

63-125 
μm 

>125 
μm 

63-125 
μm 

>125 
μm 

Cassidulina 
neoteretis 0 0 0 0 0 83 0 0 0 139 

Elphidium 
excavatum subsp. 
clavatum 

0 54 0 0 0 0 0 0 0 62 

Ioanella tumidula 0 0 0 4 0 0 0 2 0 0 
Labrospira 
crassimargo 0 10 0 0 0 0 0 0 0 0 

Laevidentalina 
elegans 0 0 0 0 0 0 0 2 0 0 

Lagenammina 
arenulata 0 0 0 0 0 1 0 0 0 17 

Quinqueloculina 
arctica 0 0 0 1 0 0 0 0 0 0 

Nonionellina 
labradorica 0 15 0 0 0 0 0 0 0 0 

Nonionina scapha 
var. arenacea 0 8 0 0 0 0 0 0 0 0 

Oridorsalis tenerus 0 0 1 0 0 0 2 9 0 0 
Parafissurina 
tectulostoma 0 0 0 0 1 0 0 0 1 0 

Psammophaga sp. 0 0 0 0 2 0 0 0 0 0 
Recurvoïdes 
contortus 0 9 0 0 0 0 0 0 0 0 

Saccammina sp. 0 6 0 0 6 0 0 0 0 0 
Triloculina oblonga 0 0 0 1 0 1 0 1 0 0 
Others 0 17 0 0 0 6 0 0 0 15 
No of living 
specimens counted 0 119 1 6 9 91 2 14 1 233 

Living 
specimens/50cm3 0 14 0.5 1 6 11 1 2 0.9 50 

No of dead 
specimens counted 186 54 8552 19056 266 2526 21184 34576 298 470 

Dead 
specimens/50 cm3 103 6 4598 2394 182 294 11149 4058 677 100 

 


