841 research outputs found
Realization of low-loss mirrors with sub-nanometer flatness for future gravitational wave detectors
The second generation of gravitational wave detectors will aim at improving by an order of magnitude their sensitivity versus the present ones (LIGO and VIRGO). These detectors are based on long-baseline Michelson interferometer with high finesse Fabry-Perot cavity in the arms and have strong requirements on the mirrors quality. These large low-loss mirrors (340 mm in diameter, 200 mm thick) must have a near perfect flatness. The coating process shall not add surface figure Zernike terms higher than second order with amplitude >0.5 nm over the central 160 mm diameter. The limits for absorption and scattering losses are respectively 0.5 and 5 ppm. For each cavity the maximum loss budget due to the surface figure error should be smaller than 50 ppm. Moreover the transmission matching between the two inputs mirrors must be better than 99%.
We describe the different configurations that were explored in order to respect all these requirements. Coatings are done using IBS.
The two first configurations based on a single rotation motion combined or not with uniformity masks allow to obtain coating thickness uniformity around 0.2 % rms on 160 mm diameter. But this is not sufficient to meet all the specifications.
A planetary motion completed by masking technique has been studied. With simulated values the loss cavity is below 20 ppm, better than the requirements. First experimental results obtained with the planetary system will be presented
Origin of negative cerium anomalies in subduction-related volcanic samples: Constraints from Ce and Nd isotopes
Negative Cerium (Ce) anomalies are observed in chondrite-normalized Rare Earth Element patterns from various volcanic arc suites. These anomalies are well defined in volcanic rocks from the Mariana arc and have been interpreted as the result of addition of subducted sediments to the arc magma sources. This study combines ¹⁴³Nd/¹⁴⁴Nd and ¹³⁸Ce/¹⁴²Ce isotope measurements in Mariana volcanic rocks that have Ce anomalies ranging from 0.97 to 0.90. The dataset includes sediments sampled immediately before subduction at the Mariana Trench (Sites 801 and 802 of ODP Leg 129) and primitive basalts from the Southern Mariana Trough (back-arc basin). Binary mixing models between the local depleted mantle and an enriched end-member using both types of sediment (biosiliceous and volcaniclastic) found in the sedimentary column in front of the arc are calculated. Marianas arc lavas have Ce and Nd isotopic compositions that require <2.5% of a sediment component derived from the volcaniclastics. With this proportion of sediment, most of the Ce/Ce* range measured in lavas is reproduced. Thus, this study confirms that the origin of the Ce anomalies in the Mariana arc magmas can be principally attributed to recycling of trench sediments through active subduction. The participation of a component derived from biosiliceous sediments does not explain the Ce-Nd isotope composition of the lavas because the involved proportion is too high (up to 8%) in comparison to results obtained from other geochemical proxys. Using this end-member, the modeled Ce anomalies are also too high (0.91–0.84) in comparison to those measured in lavas. Various processes and conditions are able to generate Ce anomalies: oxygen fugacity, residual mineral phases, partial melting, fractional crystallization and tropical weathering. Their influence in the case of Mariana volcanic arc magmas seems to be very limited but partial melting effect may explain the lowest measured Ce/Ce* values. Magmatic processes cannot be definitely ruled out in producing Ce anomalies in other arc system environments. Additional experimental data, however, are needed for a better understanding of the behavior of cerium relative to its neighboring elements. Also, this study highlights the importance of using local depleted mantle and sediments to model the isotopic compositions of arc lavas
Characterization of the LIGO detectors during their sixth science run
31 pages, 13 figures - See paper for full list of authorsInternational audienceIn 2009-2010, the Laser Interferometer Gravitational-wave Observatory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves of astrophysical origin. The sensitiv- ity of these detectors was limited by a combination of noise sources inherent to the instrumental design and its environment, often localized in time or frequency, that couple into the gravitational-wave readout. Here we review the performance of the LIGO instruments during this epoch, the work done to characterize the de- tectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of LIGO to a variety of astrophysical sources
Virgo calibration and reconstruction of the gravitational wave strain during VSR1
Virgo is a kilometer-length interferometer for gravitational waves detection
located near Pisa. Its first science run, VSR1, occured from May to October
2007. The aims of the calibration are to measure the detector sensitivity and
to reconstruct the time series of the gravitational wave strain h(t). The
absolute length calibration is based on an original non-linear reconstruction
of the differential arm length variations in free swinging Michelson
configurations. It uses the laser wavelength as length standard. This method is
used to calibrate the frequency dependent response of the Virgo mirror
actuators and derive the detector in-loop response and sensitivity within ~5%.
The principle of the strain reconstruction is highlighted and the h(t)
systematic errors are estimated. A photon calibrator is used to check the sign
of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz
with systematic errors estimated to 6% in amplitude. The phase error is
estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be
published in Journal of Physics Conference Series (JPCS). Second release:
correct typo
Calibration and sensitivity of the Virgo detector during its second science run
The Virgo detector is a kilometer-length interferometer for gravitational
wave detection located near Pisa (Italy). During its second science run (VSR2)
in 2009, six months of data were accumulated with a sensitivity close to its
design. In this paper, the methods used to determine the parameters for
sensitivity estimation and gravitational wave reconstruction are described. The
main quantities to be calibrated are the frequency response of the mirror
actuation and the sensing of the output power. Focus is also put on their
absolute timing. The monitoring of the calibration data as well as the
parameter estimation with independent techniques are discussed to provide an
estimation of the calibration uncertainties. Finally, the estimation of the
Virgo sensitivity in the frequency-domain is described and typical
sensitivities measured during VSR2 are shown.Comment: 30 pages, 23 figures, 1 table. Published in Classical and Quantum
Gravity (CQG), Corrigendum include
Reconstruction of the gravitational wave signal during the Virgo science runs and independent validation with a photon calibrator
The Virgo detector is a kilometer-scale interferometer for gravitational wave
detection located near Pisa (Italy). About 13 months of data were accumulated
during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and
September 2011, with increasing sensitivity.
In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the
gravitational wave strain time series from the detector signals is
described. The standard consistency checks of the reconstruction are discussed
and used to estimate the systematic uncertainties of the signal as a
function of frequency. Finally, an independent setup, the photon calibrator, is
described and used to validate the reconstructed signal and the
associated uncertainties.
The uncertainties of the time series are estimated to be 8% in
amplitude. The uncertainty of the phase of is 50 mrad at 10 Hz with a
frequency dependence following a delay of 8 s at high frequency. A bias
lower than and depending on the sky direction of the GW is
also present.Comment: 35 pages, 16 figures. Accepted by CQ
Searching for stochastic gravitational waves using data from the two co-located LIGO Hanford detectors
21 pages, 10 figures, 5 tables, see paper for full list of authorsInternational audienceSearches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a non-co-located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40 - 460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a 95% confidence level (C.L.) upper limit on the gravitational-wave energy density of \Omega(f)<7.7 x 10^{-4} (f/ 900 Hz)^3, which improves on the previous upper limit by a factor of ∼180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors
Search for Gravitational Wave Bursts from Six Magnetars
Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom
Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3
We report on a search for gravitational waves from coalescing compact
binaries using LIGO and Virgo observations between July 7, 2009 and October 20,
2010. We searched for signals from binaries with total mass between 2 and 25
solar masses; this includes binary neutron stars, binary black holes, and
binaries consisting of a black hole and neutron star. The detectors were
sensitive to systems up to 40 Mpc distant for binary neutron stars, and further
for higher mass systems. No gravitational-wave signals were detected. We report
upper limits on the rate of compact binary coalescence as a function of total
mass, including the results from previous LIGO and Virgo observations. The
cumulative 90%-confidence rate upper limits of the binary coalescence of binary
neutron star, neutron star- black hole and binary black hole systems are 1.3 x
10^{-4}, 3.1 x 10^{-5} and 6.4 x 10^{-6} Mpc^{-3}yr^{-1}, respectively. These
upper limits are up to a factor 1.4 lower than previously derived limits. We
also report on results from a blind injection challenge.Comment: 11 pages, 5 figures. For a repository of data used in the
publication, go to:
. Also see the
announcement for this paper on ligo.org at:
<http://www.ligo.org/science/Publication-S6CBCLowMass/index.php
Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts
Aims. A transient astrophysical event observed in both gravitational wave
(GW) and electromagnetic (EM) channels would yield rich scientific rewards. A
first program initiating EM follow-ups to possible transient GW events has been
developed and exercised by the LIGO and Virgo community in association with
several partners. In this paper, we describe and evaluate the methods used to
promptly identify and localize GW event candidates and to request images of
targeted sky locations.
Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to
Oct 20 2010), a low-latency analysis pipeline was used to identify GW event
candidates and to reconstruct maps of possible sky locations. A catalog of
nearby galaxies and Milky Way globular clusters was used to select the most
promising sky positions to be imaged, and this directional information was
delivered to EM observatories with time lags of about thirty minutes. A Monte
Carlo simulation has been used to evaluate the low-latency GW pipeline's
ability to reconstruct source positions correctly.
Results. For signals near the detection threshold, our low-latency algorithms
often localized simulated GW burst signals to tens of square degrees, while
neutron star/neutron star inspirals and neutron star/black hole inspirals were
localized to a few hundred square degrees. Localization precision improves for
moderately stronger signals. The correct sky location of signals well above
threshold and originating from nearby galaxies may be observed with ~50% or
better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not
included in v1. Accepted for publication in Astronomy & Astrophysic
- …