34 research outputs found

    Can Synthetic Data Boost the Training of Deep Acoustic Vehicle Counting Networks?

    Full text link
    In the design of traffic monitoring solutions for optimizing the urban mobility infrastructure, acoustic vehicle counting models have received attention due to their cost effectiveness and energy efficiency. Although deep learning has proven effective for visual traffic monitoring, its use has not been thoroughly investigated in the audio domain, likely due to real-world data scarcity. In this work, we propose a novel approach to acoustic vehicle counting by developing: i) a traffic noise simulation framework to synthesize realistic vehicle pass-by events; ii) a strategy to mix synthetic and real data to train a deep-learning model for traffic counting. The proposed system is capable of simultaneously counting cars and commercial vehicles driving on a two-lane road, and identifying their direction of travel under moderate traffic density conditions. With only 24 hours of labeled real-world traffic noise, we are able to improve counting accuracy on real-world data from 63%63\% to 88%88\% for cars and from 86%86\% to 94%94\% for commercial vehicles.Comment: Accepted paper: 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024

    The Role of Galactic Winds on Molecular Gas Emission from Galaxy Mergers

    Full text link
    We assess the impact of starburst and AGN feedback-driven winds on the CO emission from galaxy mergers, and, in particular, search for signatures of these winds in the simulated CO morphologies and emission line profiles. We do so by combining a 3D non-LTE molecular line radiative transfer code with smoothed particle hydrodynamics (SPH) simulations of galaxy mergers that include prescriptions for star formation, black hole growth, a multiphase interstellar medium (ISM), and the winds associated with star formation and black hole growth. Our main results are: (1) Galactic winds can drive outflows of masses ~10^8-10^9 Msun which may be imaged via CO emission line mapping. (2) AGN feedback-driven winds are able to drive imageable CO outflows for longer periods of time than starburst-driven winds owing to the greater amount of energy imparted to the ISM by AGN feedback compared to star formation. (3) Galactic winds can control the spatial extent of the CO emission in post-merger galaxies, and may serve as a physical motivation for the sub-kiloparsec scale CO emission radii observed in local advanced mergers. (4) Secondary emission peaks at velocities greater than the circular velocity are seen in the CO emission lines in all models. In models with winds, these high velocity peaks are seen to preferentially correspond to outflowing gas entrained in winds, which is not the case in the model without winds. The high velocity peaks seen in models without winds are typically confined to velocity offsets (from the systemic) < 1.7 times the circular velocity, whereas the models with AGN feedback-driven winds can drive high velocity peaks to ~2.5 times the circular velocity.Comment: Accepted by ApJ; Minor revisions; Resolution tests include

    Coagulation of small grains in disks: the influence of residual infall and initial small-grain content

    Get PDF
    Turbulent coagulation in protoplanetary disks is known to operate on timescale far shorter than the lifetime of the disk. In the absence of mechanisms that replenish the small dust grain population, protoplanetary disks would rapidly lose their continuum opacity-bearing dust. This is inconsistent with infrared observations of disks around T Tauri stars and Herbig Ae/Be stars, which are usually optically thick at visual wavelengths and show signatures of small (a<~ 3um) grains. A plausible replenishing mechanism of small grains is collisional fragmentation or erosion of large dust aggregates, which model calculations predict to play an important role in protoplanetary disks. If optically thick disks are to be seen as proof for ongoing fragmentation or erosion, then alternative explanations for the existence of optically thick disks must be studied carefully. In this study we explore two scenarios. First, we study the effect of residual, low-level infall of matter onto the disk surface. We find that infall rates as low as 10^{-11} Msun/yr can, in principle, replenish the small grain population to a level that keeps the disk marginally optically thick. However, it remains to be seen if the assumption of such inflow is realistic for star+disk systems at the age of several Myrs, at which winds and jets are expected to have removed any residual envelope. In summary, fragmentation or erosion still appear to be the most promising processes to explain the abundant presence of small grains in old disks.Comment: 10 pages, 4 figures, A&A in pres

    Modeling the Dust Properties of z ~ 6 Quasars with ART^2 -- All-wavelength Radiative Transfer with Adaptive Refinement Tree

    Full text link
    The detection of large quantities of dust in z ~ 6 quasars by infrared and radio surveys presents puzzles for the formation and evolution of dust in these early systems. Previously (Li et al. 2007), we showed that luminous quasars at z > 6 can form through hierarchical mergers of gas-rich galaxies. Here, we calculate the dust properties of simulated quasars and their progenitors using a three-dimensional Monte Carlo radiative transfer code, ART^2 -- All-wavelength Radiative Transfer with Adaptive Refinement Tree. ART^2 incorporates a radiative equilibrium algorithm for dust emission, an adaptive grid for inhomogeneous density, a multiphase model for the ISM, and a supernova-origin dust model. We reproduce the SED and dust properties of SDSS J1148+5251, and find that the infrared emission are closely associated with the formation and evolution of the quasar host. The system evolves from a cold to a warm ULIRG owing to heating and feedback from stars and AGN. Furthermore, the AGN has significant implications for the interpretation of observation of the hosts. Our results suggest that vigorous star formation in merging progenitors is necessary to reproduce the observed dust properties of z~6 quasars, supporting a merger-driven origin for luminous quasars at high redshifts and the starburst-to-quasar evolutionary hypothesis. (Abridged)Comment: 26 pages, 22 figures, accepted by ApJ. Version with full resolution images is available at http://www.cfa.harvard.edu/~yxli/ARTDUST/astroph0706.3706.pd

    ART^2 : Coupling Lyman-alpha Line and Multi-wavelength Continuum Radiative Transfer

    Full text link
    Narrow-band Lya line and broad-band continuum have played important roles in the discovery of high-redshift galaxies in recent years. Hence, it is crucial to study the radiative transfer of both Lya and continuum photons in the context of galaxy formation and evolution in order to understand the nature of distant galaxies. Here, we present a three-dimensional Monte Carlo radiative transfer code, All-wavelength Radiative Transfer with Adaptive Refinement Tree (ART^2), which couples Lya line and multi-wavelength continuum, for the study of panchromatic properties of galaxies and interstellar medium. This code is based on the original version of Li et al., and features three essential modules: continuum emission from X-ray to radio, Lya emission from both recombination and collisional excitation, and ionization of neutral hydrogen. The coupling of these three modules, together with an adaptive refinement grid, enables a self-consistent and accurate calculation of the Lya properties. As an example, we apply ART^2 to a cosmological simulation that includes both star formation and black hole growth, and study in detail a sample of massive galaxies at redshifts z=3.1 - 10.2. We find that these galaxies are Lya emitters (LAEs), whose Lya emission traces the dense gas region, and that their Lya lines show a shape characteristic of gas inflow. Furthermore, the Lya properties, including photon escape fraction, emergent luminosity, and equivalent width, change with time and environment. Our results suggest that LAEs evolve with redshift, and that early LAEs such as the most distant one detected at z ~ 8.6 may be dwarf galaxies with a high star formation rate fueled by infall of cold gas, and a low Lya escape fraction.Comment: 20 pages, 16 figures, accepted for publication in MNRA

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference

    Letter of intent for KM3NeT 2.0

    Get PDF
    corecore