2,971 research outputs found

    Red Parkes-Quasars: Evidence for Soft X-ray Absorption

    Get PDF
    The Parkes Half-Jansky Flat Spectrum Sample contains a large number of sources with unusually red optical-to-near-infrared continua. If this is to be interpreted as extinction by dust in the line-of-sight, then associated material might also give rise to absorption in the soft X-ray regime. This hypothesis is tested using broadband (0.1-2.4 keV) data from the {\it ROSAT} All-Sky Survey provided by Siebert et al. (1998). Significant (>3σ>3\sigma confidence level) correlations between optical (and near-infrared)--to--soft X-ray continuum slope and optical extinction are found in the data, consistent with absorption by material with metallicity and a range in gas-to-dust ratio as observed in the local ISM. Under this simple model, the soft X-rays are absorbed at a level consistent with the range of extinctions (0<AV<60< A_{V}< 6 magnitudes) implied by the observed optical reddening. Excess X-ray absorption by warm (ionised) gas, (ie. a `warm absorber') is not required.Comment: 23 pages of text, 3 figures, to appear in Jan 10 (1999) issue of The Astrophysical Journa

    Strong lens search in the ESO public Survey KiDS

    Get PDF
    We have started a systematic search of strong lens candidates in the ESO public survey KiDS based on the visual inspection of massive galaxies in the redshift range 0.1<z<0.50.1<z<0.5. As a pilot program we have inspected 100 sq. deg., which overlap with SDSS and where there are known lenses to use as a control sample. Taking advantage of the superb image quality of VST/OmegaCAM, the colour information and accurate model subtracted images, we have found 18 new lens candidates, for which spectroscopic confirmation will be needed to confirm their lensing nature and study the mass profile of the lensing galaxies.Comment: 4 pages, 1 figure, to appear on the refereed Proceeding of the "The Universe of Digital Sky Surveys" conference held at the INAF--OAC, Naples, on 25th-28th november 2014, to be published on Astrophysics and Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic

    The luminosity and stellar mass Fundamental Plane of early-type galaxies

    Full text link
    From a sample of ~50000 early-type galaxies from the SDSS, we measured the traditional Fundamental Plane in four bands. We then replaced luminosity with stellar mass, and measured the "stellar mass" FP. The FP steepens slightly as one moves from shorter to longer wavelengths: the orthogonal fit has slope 1.40 in g and 1.47 in z. The FP is thinner at longer wavelengths: scatter is 0.062 dex in g, 0.054 dex in z. The scatter is larger at small galaxy sizes/masses; at large masses measurement errors account for essentially all of the observed scatter. The FP steepens further when luminosity is replaced with stellar mass, to slope ~ 1.6. The intrinsic scatter also reduces further, to 0.048 dex. Since color and stellar mass-to-light ratio are closely related, this explains why color can be thought of as the fourth FP parameter. However, the slope of the stellar mass FP remains shallower than the value of 2 associated with the virial theorem. This is because the ratio of dynamical to stellar mass increases at large masses as M_d^0.17. The face-on view of the stellar mass kappa-space suggests that there is an upper limit to the stellar density for a given dynamical mass, and this decreases at large masses: M_*/R_e^3 ~ M_d^-4/3. We also study how the estimated coefficients a and b of the FP are affected by other selection effects (e.g. excluding small sigma biases a high; excluding fainter L biases a low). These biases are seen in FPs which have no intrinsic curvature, so the observation that a and b scale with L and sigma is not, by itself, evidence that the Plane is warped. We show that the FP appears to curve sharply downwards at the small mass end, and more gradually downwards towards larger masses. Whereas the drop at small sizes is real, most of the latter effect is due to correlated errors.Comment: 17 pages, 15 figures, MNRAS in press. Added appendix on possible sample contamination by disk

    Galaxy density profiles and shapes -- I. simulation pipeline for lensing by realistic galaxy models

    Full text link
    Studies of strong gravitational lensing in current and upcoming wide and deep photometric surveys, and of stellar kinematics from (integral-field) spectroscopy at increasing redshifts, promise to provide valuable constraints on galaxy density profiles and shapes. However, both methods are affected by various selection and modelling biases, whch we aim to investigate in a consistent way. In this first paper in a series we develop a flexible but efficient pipeline to simulate lensing by realistic galaxy models. These galaxy models have separate stellar and dark matter components, each with a range of density profiles and shapes representative of early-type, central galaxies without significant contributions from other nearby galaxies. We use Fourier methods to calculate the lensing properties of galaxies with arbitrary surface density distributions, and Monte Carlo methods to compute lensing statistics such as point-source lensing cross-sections. Incorporating a variety of magnification bias modes lets us examine different survey limitations in image resolution and flux. We rigorously test the numerical methods for systematic errors and sensitivity to basic assumptions. We also determine the minimum number of viewing angles that must be sampled in order to recover accurate orientation-averaged lensing quantities. We find that for a range of non-isothermal stellar and dark matter density profiles typical of elliptical galaxies, the combined density profile and corresponding lensing properties are surprisingly close to isothermal around the Einstein radius. The converse implication is that constraints from strong lensing and/or stellar kinematics, which are indeed consistent with isothermal models near the Einstein radius, cannot trivially be extrapolated to smaller and larger radii.Comment: 31 pages, 15 figures; paper II at arXiv:0808.2497; accepted for publication in MNRAS; PDF file with full resolution figures at http://www.sns.ias.edu/~glenn/paper1.pd

    Cosmology and Cluster Halo Scaling Relations

    Get PDF
    We explore the effects of dark matter and dark energy on the dynamical scaling properties of galaxy clusters. We investigate the cluster Faber-Jackson (FJ), Kormendy and Fundamental Plane (FP) relations between the mass, radius and velocity dispersion of cluster size halos in cosmological NN-body simulations. The simulations span a wide range of cosmological parameters, representing open, flat and closed Universes. Independently of the cosmology, we find that the simulated clusters are close to a perfect virial state and do indeed define a Fundamental Plane. The fitted parameters of the FJ, Kormendy and FP relationships do not show any significant dependence on Ωm\Omega_m and/or ΩΛ\Omega_{\Lambda}. The one outstanding effect is the influence of Ωm\Omega_{m} on the thickness of the Fundamental Plane. Following the time evolution of our models, we find slight changes of FJ and Kormendy parameters in high Ωm\Omega_m universe, along with a slight decrease of FP fitting parameters. We also see an initial increase of the FP thickness followed by a convergence to a nearly constant value. The epoch of convergence is later for higher values of Ωm\Omega_m while the thickness remains constant in the low Ωm\Omega_m Λ\Lambda-models. We also find a continuous increase of the FP thickness in the Standard CDM (SCDM) cosmology. There is no evidence that these differences are due to the different power spectrum slope at cluster scales. From the point of view of the FP, there is little difference between clusters that quietly accreted their mass and those that underwent massive mergers. The principal effect of strong mergers is to change significantly the ratio of the half-mass radius rhalfr_{half} to the harmonic mean radius rhr_h.Comment: 24 pages, 17 figures, submitted to MNRA

    Comparison of UVC/S<sub>2</sub>O<sub>8</sub> <sup>2-</sup> with UVC/H<sub>2</sub>O<sub>2</sub> in terms of efficiency and cost for the removal of micropollutants from groundwater

    Get PDF
    This study compared the UVC/S2O82- system with the more commonly used AOP in water industry, UVC/H2O2, and examined whether the first one can be an economically feasible alternative technology. Atrazine and 4 volatile compounds (methyl tert-butyl ether, cis-dichlorethen, 1,4-dioxane and 1,1,1-trichloroethane) were chosen as model contaminants because they exhibit different susceptibility to UVC photolysis and AOPs. A collimated beam apparatus was utilized for the majority of the experiments (controlled environment, without mass transfer phenomena), while selected experiments were performed in a flow-through reactor to simulate industrial applications. Initial experiments on the activation of oxidants with a LP lamp indicated that S2O82- is photolysed about 2.3times faster than H2O2 and that the applied treatment times were not sufficient to utilize the majority of the oxidant. The effect of oxidants' concentrations were tested with atrazine alone and in the micropollutants' mixture and it was decided to use 11.8mgL-1 S2O82- and 14.9mgL-1 H2O2 for further testing since is closer to industrial applications and to minimize the residual oxidant concentration. Changes of the matrix composition of the treated water were investigated with the addition of chloride, bicarbonate and humic acids at concentrations relevant to a well-water-sample, the results showed that the system least affected was UVC/H2O2. Only when bicarbonate was used, UVC/S2O82- performed better. Overall, testing these systems with the mixture of micropollutants gave better insights to their efficiency than atrazine alone and UVC/S2O82- is recommended for selective oxidation of challenging matrices

    A Descriptive Morphology of the Ant Genus Procryptocerus (Hymenoptera: Formicidae)

    Get PDF
    Morphology is the most direct approach biologists have to recognize uniqueness of insect species as compared to close relatives. Ants of the genus Procryptocerus possess important morphologic characters yet have not been explored for use in a taxonomic revision. The genus is characterized by the protrusion of the clypeus forming a broad nasus and antennal scrobes over the eyes. The toruli are located right posterior to the flanks of the nasus opposite to each other. The vertex is deflexed posteriorly in most species. An in-group comparison of the external morphology is presented focusing on the workers. A general morphology for gynes and males is also presented. Previously mentioned characters as well as new ones are presented, and their character states in different species are clarified. For the metasoma a new system of ant metasomal somite nomenclature is presented that is applicable to Aculeata in general. Finally, a Glossary of morphological terms is offered for the genus (available online). Most of the terminology can be used in other members of the Formicidae and Aculeata

    Recent developments in German corporate governance.

    Get PDF
    This paper provides an overview of the German corporate governance system. We review the governance role of large shareholders, creditors, the product market and the supervisory board. We also discuss the importance of mergers and acquisitions, the market in block trades, and the lack of a hostile takeover market. Given that Germany is often referred to as a bank-based economy, we pay particular attention to the role of the universal banks (Hausbanken). We show that the German system is characterised by a market for partial corporate control, large shareholders and bank/creditor monitoring, a two-tier (management and supervisory) board with co-determination between shareholders and employees on the supervisory board, a disciplinary product-market, and corporate governance regulation largely based on EU directives but with deep roots in the German codes and legal doctrine. Another important feature of the German system is its corporate governance efficiency criterion which is focused on the maximisation of stakeholder value rather than shareholder value. However, the German corporate governance system has experienced many important changes over the last decade. First, the relationship between ownership or control concentration and profitability has changed over time. Second, the pay-for-performance relation is influenced by large shareholder control: in firms with controlling blockholders and when a universal bank is simultaneously an equity- and debtholder, the pay-for-performance relation is lower than in widely-held firms or blockholder-controlled firms. Third, since 1995 several major regulatory initiatives (including voluntary codes) have increased transparency and accountability

    From Galaxy Clusters to Ultra-Faint Dwarf Spheroidals: A Fundamental Curve Connecting Dispersion-supported Galaxies to Their Dark Matter Halos

    Full text link
    We examine scaling relations of dispersion-supported galaxies over more than eight orders of magnitude in luminosity by transforming standard fundamental plane parameters into a space of mass (M1/2), radius (r1/2), and luminosity (L1/2). We find that from ultra-faint dwarf spheroidals to giant cluster spheroids, dispersion-supported galaxies scatter about a one-dimensional "fundamental curve" through this MRL space. The weakness of the M1/2-L1/2 slope on the faint end may imply that potential well depth limits galaxy formation in small galaxies, while the stronger dependence on L1/2 on the bright end suggests that baryonic physics limits galaxy formation in massive galaxies. The mass-radius projection of this curve can be compared to median dark matter halo mass profiles of LCDM halos in order to construct a virial mass-luminosity relationship (Mvir-L) for galaxies that spans seven orders of magnitude in Mvir. Independent of any global abundance or clustering information, we find that (spheroidal) galaxy formation needs to be most efficient in halos of Mvir ~ 10^12 Msun and to become inefficient above and below this scale. Moreover, this profile matching technique is most accurate at the high and low luminosity extremes (where dark matter fractions are highest) and is therefore quite complementary to statistical approaches that rely on having a well-sampled luminosity function. We also consider the significance and utility of the scatter about this relation, and find that in the dSph regime observational errors are almost at the point where we can explore the intrinsic scatter in the luminosity-virial mass relation. Finally, we note that purely stellar systems like Globular Clusters and Ultra Compact Dwarfs do not follow the fundamental curve relation. This allows them to be easily distinguished from dark-matter dominated dSph galaxies in MRL space. (abridged)Comment: 27 pages, 18 figures, ApJ accepted. High-res movies of 3D figures are available at http://www.physics.uci.edu/~bullock/fcurve/movies.htm
    corecore