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ABSTRACT
We explore the effects of dark matter and dark energy on the dynamical scaling properties of
galaxy clusters. We investigate the cluster Faber–Jackson (FJ), Kormendy and Fundamental
Plane (FP) relations between the mass, radius and velocity dispersion of cluster-sized haloes
in cosmological N-body simulations. The simulations span a wide range of cosmological
parameters, representing open, flat and closed Universes.

Independently of the cosmology, we find that the simulated clusters are close to a perfect
virial state and do indeed define an FP. The fitted parameters of the FJ, Kormendy and FP
relationships do not show any significant dependence on �m and/or ��. One outstanding
effect is the influence of �m on the thickness of the FP.

Following the time evolution of our models, we find slight changes of FJ and Kormendy
parameters in high-�m universe, along with a slight decrease of FP fitting parameters. We
also see an initial increase of the FP thickness followed by a convergence to a nearly constant
value. The epoch of convergence is later for higher values of �m, while the thickness remains
constant in the low-�m � models. We also find a continuous increase of the FP thickness in
the standard cold dark matter cosmology. There is no evidence that these differences are due
to the different power spectrum slopes at cluster scales.

From the point of view of the FP, there is little difference between clusters that quietly
accreted their mass and those that underwent massive mergers. The principal effect of strong
mergers is to significantly change the ratio of the half-mass radius rhalf to the harmonic mean
radius rh.

Key words: galaxies: clusters: general – cosmological parameters – cosmology: theory –
dark matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

Recent observations of distant supernovae (Riess et al. 1998;
Perlmutter et al. 1999) suggest that we are living in a flat, acceler-
ated Universe with a low matter density. This accelerated expansion
has established the possibility of a dark energy component which
behaves like Einstein’s cosmological constant �. A positive cos-
mological constant resolves the apparent conflict suggested by the
old age of globular cluster stars, and the estimated value (Spergel
et al. 2003, 2007) appears sufficient to yield a flat geometry of our
Universe.

The role of � in the process of structure formation is not yet fully
understood. Although its influence can be seen when looking at the
global evolution of the Universe, its role in the dynamical evolution
of cosmic structures is not clear. The most direct impact of � comes

�E-mail: p.araya@jacobs-university.de

from its influence on the amplitude of the primordial perturbation
power spectrum; there is also an influence from the change in the
cosmic and dynamical time-scales. The direct dynamical influence
is probably minor: we do know that in the linear regime it accounts
for a mere ∼1/70th of the influence of matter perturbation (Lahav
et al. 1991).

Most viable theories of cosmic structure formation involve hi-
erarchical clustering. Small structures form first and they merge
to give birth to bigger ones. The rate and history of this process
are highly dependent on the amount of (dark) matter present in the
Universe. In Universes with a low �m, structure formation ceases at
much early times than that in cosmologies with high-density values.

Within this hierarchical process, clusters of galaxies are the
most massive and most recently formed structures in the Universe.
Their collapse time is comparable to the age of the Universe. This
makes them important probes for the study of cosmic structure
formation and evolution. The hierarchical clustering history from
which galaxy clusters emerge involves a highly complex process of
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merging, accretion and virialization. In this paper, we investigate in
how far we can get insight into this history on the basis of the inter-
nal properties of the clusters. This involves characteristics such as
their mass and mass distribution, size, and kinetic and gravitational
potential energy. In particular, we are keen to learn whether these
do show any possible trace of a cosmological constant.

One particular profound manifestation of the virial state of cos-
mic objects is via scaling relations that connect various structural
properties. Scaling relations of collapsed and virialized objects re-
late two or three fundamental characteristics. The first involves a
quantity measuring the amount of mass M, often expressed in terms
of the amount of light L emitted by the object. The second quantity
involves the size of the object, while the third one quantifies its dy-
namical state. For a virialized halo with mass M, size R and velocity
dispersion σ v = 〈v2〉1/2, the implied scaling relation is

log M = 2 log σv + log R + εM , (1)

where εM is a constant that reflects the internal dynamics of the
system. (εM is determined by issues such as the isotropy of the
cluster velocity dispersion, its shape and any substructure).

Systems having similar values of this constant would be expected
to form a two-parameter family of objects: observationally, this
manifests itself as the ‘Fundamental Plane (FP)’. Objects lying on
the same plane might be expected to have similar formation histories
and, conversely, the nature of the FP is a clue to the underlying
formation mechanism.

The scaling relations are of great importance for a variety of
reasons. First of all, they inform us about the dynamical state of the
objects and must be a profound reflection of the galaxy formation
process (Robertson et al. 2006). Also, they have turned out to be
of substantial practical importance. Because they relate an intrinsic
distance-independent quantity like velocity dispersion to a distance-
dependent one like Le, they can be used as cosmological distance
indicators.

1.1 Observed relationships

1.1.1 Galaxies

Since the mid 70s, we know that the observed properties of el-
liptical galaxies follow scaling relations. The Faber–Jackson (FJ)
relation (Faber & Jackson 1976) relates the luminosity L and the
velocity dispersion σ of an elliptical galaxy. The Tully–Fisher re-
lation (Tully & Fisher 1977) is the equivalent for spiral galaxies. A
different, though related, scaling is that between the effective radius
re and the luminosity L of the galaxy. This is known as the Kor-
mendy relation (Kormendy 1977). These two relations turned out to
be manifestations of a deeper scaling relation between three funda-
mental characteristics, which became known as the FP (Djorgovski
& Davis 1987; Dressler et al. 1987).

The FP is generally expressed as a relationship between three
parameters, though there is no consensus as to which three should
best be used, nor precisely how to define them. This makes detailed
comparisons somewhat difficult. Some authors use the set (log R,
log σ , log I ), I being the luminosity in some spectral band within
some radius R, while others use the set (log R, log σ , μ), μ being
the mean surface brightness within that radius. Comparisons are
further complicated by the fact that there appear to be manifest
residual luminosity dependencies in the fits, as reported in a recent
study of the Sloan Digital Sky Survey by Nigoche-Netro, Ruelas-
Mayorgo & Franco-Balderas (2009).

Care is needed when interpreting these observed relationships.
Observed data generally refer to luminosity rather than mass, and
the radius that is used generally refers to some fiducial radius such
as the half-light radius or some radius based on profile fitting. Often,
the half-light radius, Re, as determined from a fit to a de Vaucouleurs
profile is used.

This situation has been improved somewhat by the gravitational
lensing study of Bolton et al. (2007). These authors presented a new
formulation of the FP using lensing data to replace surface bright-
ness with surface mass density. They also present an interesting
alternative, which they refer to as the ‘mass plane’ (MP), in which
they find the dependence of log(Re) on log (σ e2) and surface mass
density �e2 within a radius Re/2. Using surface mass density �e2

within a radius Re/2 in place of surface brightness Ie removes one
of the assumptions about the relationship between mass and light.

1.1.2 Galaxy clusters

Much recent galaxy cluster work on the FP has focused on the
differences between the FPs of the clusters as defined by their
member galaxies (see e.g. D’Onofrio et al. 2008 and references
therein).

Galaxy cluster scaling relations were discovered by Schaeffer
et al. (1993) who studied a sample of 16 galaxy clusters, conclud-
ing that these systems also populate an FP. Adami et al. (1998) used
the ESO (European Southern Observatory) Nearby Abell Cluster
Survey (ENACS) to study the existence of an FP for rich galaxy
clusters, finding that it is significantly different from that for ellip-
tical galaxies. Marmo et al. (2004) using data from the Wide-field
Nearby Galaxy-cluster Survey (WINGS) cluster survey found that
the difference is largely a simple shift in the relative positions of the
planes.

The largely unknown relationship between mass and light frus-
trates a direct comparison with the results of N-body investigations.

1.2 Numerical investigations

Later, Lanzoni et al. (2004) addressed the question using N-body
simulations for high-mass haloes, which are thought to host clusters
of galaxies. On the basis of 13 simulated massive dark matter haloes
in a �CDM cosmology, they found that the dark matter haloes
follow the FJ-, Kormendy- and FP-like relations.

In hierarchical scenarios of structure formation, haloes build up
by subsequent merging of smaller haloes into larger and larger
haloes. Some of these mergers involve sizeable clumps, most in-
volve a more quiescent accretion of matter and small clumps from
the surroundings. This process leaves its mark on the phase-space
structure of the haloes. Indeed, these dark halo streams are a major
source of attention in present-day studies of the formation of our
Galaxy (Helmi & White 1999; Helmi 2000).

It remains an interesting question as to whether we can find
evidence for these merging events in the FP. González-Garcı́a &
van Albada (2003) look into the effects of major mergers on the
FP and found that the FP does remain largely intact in the case of
two merging ellipticals. However, what the effects will be of an
incessant bombardment of a halo by material in its surroundings
has not been studied in much detail. Given that this is a sensitive
function of the cosmological scenario, we will study the influence
on FP parameters and thickness in more detail.

In this paper, we address the specific question as to whether we
can trace an influence of cosmic parameters in the scaling relations
for simulated clusters, and in particular the influence of the cos-
mic density parameter �m and the cosmological constant �. We
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use a set of dissipationless N-body simulations involving open, flat
and closed Universes. All the simulations are variants of the cold
dark matter (CDM) scenario, representing different cosmologies,
concerning both different values for the mass density �m, for dark
energy �� and for the implied power spectrum of density perturba-
tions and the related merging and accretion history of the clusters.

The organization of this paper is as follows. In Section 2, we de-
scribe the simulations and the definitions of the various parameters
we use. In Section 3, we present a general description of the scaling
relations which we investigate in this study before specifying the
way in which we analyse them from the cluster-sized haloes in our
simulation. We investigate the scaling relations of galaxy clusters
in different cosmologies at z = 0 in Section 4. Section 5 addresses
the evolution of the scaling relations as a function of redshift and
cosmic time. We also investigate the dependence of merging and
accretion on the scaling relations, which we discuss in Section 6.
The interpretation of our results on the FP within the context of the
virial theorem is discussed in Section 7. Conclusions are presented
in Section 8.

2 TH E S I M U L AT I O N S

We perform 13 N-body simulations that follow the dynamics of
N = 2563 particles in a periodic box of size L = 200 h−1 Mpc. The
initial conditions are generated with identical phases for Fourier
components of the Gaussian random field. In this way, each cosmo-
logical model contains the same morphological structures. For all
models, we chose the same Hubble parameter, h = 0.7, and the same
normalization of the power spectrum, σ 8 = 0.8. The principal differ-
ences between the simulations are the values of the matter density
and vacuum energy density parameters, �m and ��. By combining
these parameters, we get models describing the three possible ge-
ometries of the Universe: open, flat and closed. The effect of having
the same Hubble parameter and different cosmological constants
translates into having different cosmic times. Table 1 lists the val-
ues of the cosmological parameters and the cosmic times at which
the data are analysed.

The initial conditions are evolved up to the present time (z= 0) us-
ing the massive parallel tree N-body code GADGET2 (Springel 2005).
The Plummer-equivalent softening was set at εpl = 15 h−1 kpc in

physical units from z = 2 to 0, while it was taken to be fixed in
comoving units at higher redshifts. For each cosmological model,
we wrote the output of 100 snapshots, from aexp = 0.2 (z = 4) to
the present time, aexp = 1 (z = 0), equally spaced in log(a).

2.1 Halo identification

We use the HOP algorithm (Eisenstein & Hut 1998) to extract the
groups present in the simulations. HOP associates a density with
every particle. In a first step, a group is defined as a collection of
particles linked to a local density maximum. To make a distinction
between a high-density region and its surroundings, HOP uses a
regrouping procedure. This procedure identifies a group as an indi-
vidual object on the basis of a specific density value. For this critical
value, we chose the virial density value �c based on the spherical
collapse model. In order to have the proper �c, we numerically
compute its value for each of the cosmologies. See Table 1 for the
values of the virial density for each cosmology at z = 0. For the
latter, we list two values: the virial overdensity �vir,b with respect to
the background density ρb of the corresponding cosmology, and the
related virial overdensity �vir,c with respect to the critical density.

Note that we only consider groups containing more than 100
particles. Because the particle mass depends on the cosmological
scenario, this implies a different mass cut for the haloes in each
of our simulations. As a result, standard cold dark matter (SCDM)
does not have groups with masses lower than 1013 h−1 M�. We
have to keep in mind this artificial constraint when considering col-
lapse and virialization in hierarchical scenarios at high redshifts,
and also when making fits to the relationships among the various
cluster parameters. In cases where structure growth is still contin-
uing vigorously at the current epoch, the collapsed haloes at high
redshifts will have been small: our simulations would not be able
to resolve these.

2.2 Haloes and cosmology: an example

Fig. 1 follows the evolution of one particular cluster halo in four dif-
ferent cosmologies. These are �CDMO2 (open), �CDMF2 (flat),
�CDMC2 (closed) and SCDM. By using the same Fourier phases
to set up the initial conditions in each of the cosmologies, we get

Table 1. Cosmological parameters for the runs.

Model �m �� �k Age mdm mcut �vir,b �vir,c

SCDM 1.0 0 0 9.31 13.23 1323 177.65 177.65
OCDM01 0.1 0 0.9 12.55 1.32 132 978.83 97.88
OCDM03 0.3 0 0.7 11.30 3.97 397 402.34 120.70
OCDM05 0.5 0 0.5 10.53 6.62 662 278.10 139.05

�CDMO1 0.1 0.5 0.4 14.65 1.32 132 838.30 83.83
�CDMO2 0.1 0.7 0.2 15.96 1.32 132 778.30 77.83
�CDMF1 0.1 0.9 0 17.85 1.32 132 715.12 71.51
�CDMO3 0.3 0.5 0.2 12.70 3.97 397 358.21 107.46
�CDMF2 0.3 0.7 0 13.47 3.97 397 339.78 101.93
�CDMC1 0.3 0.9 −0.2 14.44 3.97 397 320.79 96.237
�CDMF3 0.5 0.5 0 11.61 6.62 662 252.38 126.19
�CDMC2 0.5 0.7 -0.2 12.17 6.62 662 241.74 120.87
�CDMC3 0.5 0.9 -0.4 12.84 6.62 6622 30.85 115.43

Note. The first column gives the identification of the runs, and the following columns give the present matter density
parameter, the density parameter associated with the cosmological constant, �k = 1 − �m − �� quantifies the curvature
of the Universe, the age of the Universe in Gyr since the big bang, the mass per particle in units of 1010 h−1 M�, the
mass cut of the groups given by HOP in units of 1010 h−1 M�, the value of the (over)density needed to have virialized
objects with respect to the background density, and similarly, but now with respect to the critical density.
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Figure 1. Cluster evolution: �m influence. Evolution as a function of redshift of a single dark matter halo in different cosmological models: �CDMO2,
�CDMF2, �CDMC2 and SCDM. The dark matter particle distribution in a box of comoving size 5 h−1 Mpc is shown at six different redshifts:
z = 2.98, 2.28, 1.53, 1.01, 0.50 and 0.00. The circles correspond to haloes identified by HOP, with the size of the circle being proportional to their virial
radius.
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Cosmology and cluster halo scaling relations 1321

a sample of corresponding haloes. In each of the cosmologies, the
evolution of the cluster halo is shown at six different redshifts, from
z ≈ 3 onwards to the present epoch z = 0. The panels show the
mass distribution in and around the cluster, and its progenitors, in a
box of comoving size 5 h−1 Mpc. Circles enclose haloes identified
by HOP, with the circle radius proportional to the virial radius of
the group (i.e. the distance from the centre of mass to the outermost
particle of the group). Projection effects may occasionally cause
circles to appear within circles.

In all four cosmologies, the buildup of the halo clearly involves
the merging of several smaller mass clumps, some of which are
identified as genuine protohaloes by means of circles. Fig. 1 shows
that the sequence �CDMO2, �CDMF2, �CDMC2 and SCDM
corresponds to a sequence in which the formation of the halo shifts
to later and later epochs. At all depicted redshifts, and in particular
at higher redshifts, the clusters in the �CDMO2 cosmology have
considerably more pronounced and developed mass concentration.

2.3 Halo properties

In our study, we limit ourselves to cluster-like haloes. A galaxy clus-
ter is defined as a dark matter halo with a mass M > 1014 h−1 M�.
We measure three quantities for each cluster and test their scaling
relations.

Scaling relations of collapsed and virialized objects relate two or
three fundamental characteristics of those objects. The first involves
a quantity measuring the amount of mass, often in terms of the
amount of light emitted by the object. The second quantity involves
the size of the object, while the third one quantifies its dynamical
state.

(i) Mass: defined as the number of particles multiplied by the
mass per particle present in each group:

M = npartmpart , (2)

where npart is the number of particles in the halo and mpart is the
mass of each particle (see Column mdm in Table 1). The mass of the
particle is different for each cosmology.

(ii) Surface mass density: alternatively, following observational
practice, we use the magnitude-scale surface mass density μ for our
FP evaluations

μ = −2.5 log M + 5 log r, (3)

where M and r are the mass and the radius of the halo. Combining
this with a mass-to-light ratio (M/L), it becomes a surface brightness,
one of the observables of the FP.

(iii) Velocity dispersion: computed as

σ 2
v = 2K

npartmpart
, (4)

where K is the kinetic energy of the halo measured taking into
account all the particles within the halo. Some perturbations are
involved as a result of not removing interlopers, though we found
that this did not systematically affect our results.

As a measure for the size of the haloes, we have explored two
options: the half-mass radius and the mean harmonic radius.

(iv) Half-mass radius: rhalf is the radius that encloses half of
the mass of the clump. This radius is closest in definition to the
half-light radius used in the observational studies.

(v) Mean harmonic radius: rh is defined as the inverse of the
mean distance between all pairs of particles in the halo:

1

rh
= 1

N

∑
i<j

1

|r i j | , N = npart(nnpart − 1)

2
, (5)

where r i j is the separation vector between the ith and jth particles.
The great virtue of this radius is that it is a good measure of the
effective radius of the gravitational potential of the clump, certainly
important when assessing the virial status of the clump. Also, it has
the practical advantage of being independent of the definition of the
cluster centre. To some extent, it is also an indicator of the internal
structure of the halo because it put extra weight to close pairs of
particles.

Most of the results presented in this paper refer to the mean
harmonic radius of the haloes; this seems rather natural given that
we are discussing the virial theorem. We have also compared the
results obtained using the half-mass radii of the haloes.

In Fig. 2, we plot the mean harmonic radius versus the half-mass
radius of the cluster-sized haloes in the SCDM and �CDMF2 mod-
els. We see that the relationship is not very tight at larger masses, and
that the differences between the two radii are particularly prominent
in the SCDM cosmology. We shall discuss this further in Section 6.
Not surprisingly, the fitted FP parameters depend strongly on which
radius is used. Equally surprising, the Kormendy relation slope does
not seem to be particularly sensitive to the choice of rh or rhalf (the
slopes are statistically not different). This is summarized in Table 6.

Figure 2. Comparison between the mean harmonic and the half-mass radii
of the cluster-sized haloes in the SCDM (top panel) and �CDMF2 (bottom
panel) scenarios. The colours depict different mass ranges, each colour
representing a 20 percentile mass quantile.
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3 SC A L I N G R E L AT I O N S

For the samples of cluster-sized haloes in our simulations, we will
be assessing three specific scaling relations: the FJ relation, the
Kormendy relation and the FP.

From observations of elliptical galaxies, we have learned that
there are tight scaling relations between a few of their fundamental
structural properties (see e.g. Binney & Merrifield 1998). These
properties are the total luminosity L of a galaxy – or its surface
brightness μ – its characteristic size Re and its velocity dispersion
σ v.

3.1 Faber–Jackson and Kormendy relations

The first scaling relation is the FJ relation (Faber & Jackson 1976)
between the luminosity L of the galaxy and its velocity dispersion
σ v,

L ∝ σβ
v , (6)

where the index β ∼ 4. A similar relation, known as the Tully–
Fisher relation (Tully & Fisher 1977), holds for H I discs of spiral
galaxies. According to this relation, the galaxies’ rotation velocity
is tightly correlated with the absolute magnitude of the galaxy.

Another relation was established by Kormendy (1977). He found
that there is a strong, not entirely unexpected, correlation between
the luminosity L and effective radius Re of the elliptical galaxies:

L ∝ Rα
e , (7)

where the index α ∼ 1.5.

3.2 Galaxy Fundamental Plane

Both the FJ and Kormendy relations relate two structural charac-
teristics and should be seen as projections of a more fundamental
and tight relation between all three structural quantities: the FP.
The FP of elliptical galaxies was first formulated by Djorgovski &
Davis (1987) and Dressler et al. (1987). When we take the three-
dimensional space defined by the effective radius Re of the galaxy,
its surface brightness Ie (with total luminosity L ∝ I eR

2
e) and veloc-

ity dispersion σ v, we find that they do not fill space homogeneously
but instead define a thin plane.

In logarithmic quantities, this plane may be parametrized as

log Re = γ log Ie + δ log σv + CFP. (8)

For example, Jørgensen, Franx & Kjaergaard (1996) found that a
reasonable fit to the FP is given by

log Re = −0.82 log Ie + 1.24 log σv + CFP. (9)

While nearly all galaxies, ranging from giant ellipticals to com-
pact dwarf ellipticals, appear to lie on the FP (also see e.g. Jørgensen,
Franx & Kjaergaard 1995; Bernardi et al. 2003; Cappellari et al.
2006; Bolton et al. 2007), it is interesting to note that diffuse dwarf
ellipticals do not (Kormendy 1987); they seem to be fundamentally
different objects.

The observed FP not only provides information on the dynamical
state of the object but also on the evolution of its stellar content and,
by implication, about its formation. For a virialized object with
effective radius Re and M/L, the FP relation will have the form

log Re = − log Ie + 2 log σv − log (M/L) + Cs , (10)

in which I e = L/4πR2
e is the mean surface brightness and Cs is a

constant dependent on the structure of the object.

The observed parameter values for elliptical galaxy FP (see equa-
tion 9) are different from what might be expected for a plane that
results simply from virialization and constant M/L. One explana-
tion for this difference is that galaxies may be structurally equivalent
while having a mass-dependent M/L. That would imply a formation
process involving a tight fine-tuning of M/L. Nevertheless, pursu-
ing this view, the parameters inferred by Jørgensen et al. (1996)
(equation 9) would imply a M/L dependence on mass:

(M/L) ∝ M0.25 , (11)

using M ∝ σ 2
vRe and L ∝ I eR

2
e (see e.g. Faber 1987). Recent semi-

analytical modelling of galaxy formation suggests a more complex
relation between the M/L and luminosity, involving a minimum M/L
for galaxies with M ≈ 1011–1012 h−1 M�. In the absence of any
M/L dependency, the discrepancy between the planes would have
to be due to variations in the structure parameters of the galaxies.

There is an intrinsic scatter of the FP that has been found for
elliptical galaxies; this has not been completely explained and may
be a manifestation of the formation process.

A slightly different approach is used in the gravitational lensing
study of Bolton et al. (2007). These authors presented a new for-
mulation of the FP using lensing data to replace surface brightness
with surface mass density, arriving at the relationship of the form

log Re = γ log Ie + δ log σe2 + CFP , (12)

where σ e2 is the velocity dispersion within half of the effective
radius Re, and

γ = −0.78 ± 0.13, δ = 1.50 ± 0.32, CFP = 3.9 ± 1.7. (13)

Furthermore, they suggest that the scatter about the FP, derived from
their data, correlates with their derived M/L for the galaxies in their
sample. The evidence is not strong though it is suggestive.

They also present an interesting alternative, which they refer
to as the MP, in which they find the dependence of log(Re) on
log(σ e2) and surface mass density �e2 within a radius Re/2:

log Re = γm log �e2 + δm log σe2 + CFP,m (14)

with

γm = −1.16 ± 0.09, δm = 1.77 ± 0.14, CFP = 7.8 ± 1.0. (15)

Using surface mass density �e2 within a radius Re/2 in place of
surface brightness Ie removes one of the assumptions about the
relationship between mass and light.

3.3 Cluster Fundamental Plane

If clusters were fully virialized objects with the same internal dy-
namics, they would necessarily lie on a universal FP in the mass–
velocity–radius space. This was first addressed by Schaeffer et al.
(1993), who, using sample of 29 Abell clusters, discovered an FP re-
lation in light–velocity–radius space: L ∝ R0.89

e σ 1.28
v . This is equiv-

alent to the relationship

log Re = −0.90 log Ie + 1.15 log σv + CFP, (16)

in which Ie is a measure of the mean surface brightness of the cluster.
The corresponding FJ relation is L ∝ R1.87

e and the Kormendy
relation is L ∝ R1.34

e . Similar numbers were inferred by Lanzoni
et al. (2004), L ∝ R0.90

e σ 1.31
v .

In a project designed to test this further, Adami et al. (1998) found
an FP relation for a sample of ENACS clusters, though their fitted
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Cosmology and cluster halo scaling relations 1323

parameters were markedly different: L ∝ R1.19±0.14 σ 0.91±0.16. This
is equivalent to the relationship

log Re = − (1.23 ± 0.20) log Ie + (1.12 ± 0.11) log σv + CFP ,

(17)

in which Ie is the mean surface brightness of the cluster. Note
that there are considerable systematic uncertainties in these values
which are not reflected in the quoted error bars: these arise out of
the profile fitting to the cluster. The above fit to the data is based on
fitting a King profile (this gave the best fit to the data).

In studies of simulated dark matter dominated galaxy clusters, we
can study scaling relations that are similar to those inferred from
observable quantities. To infer these relations, we base ourselves
on the mass M of the object. If the selected objects have the same
average density, we would expect an equivalent Kormendy relation
given by

M ∝ R3
e . (18)

Any difference in slope should be ascribed to a dependence of
mean density 〈ρ(Re)〉 on the size Re of the object. The equivalent
FP relation will be that of equation (1), while the FJ relation would
then be

M ∝ σ 3
v . (19)

Note that this is based on the assumption of constant mean density
ρ of the selected objects, in line with HOP overdensity criterion
(see Section 2.1).

Lanzoni et al. (2004) analysed the N-body cluster scaling rela-
tions on the basis of a sample of 13 massive dark matter haloes
identified in a high-resolution �CDM N-body simulations. They
were able to confirm the existence of FP relations for the simulation
dark matter clusters and also found that these have a slope that was
significantly different from the galaxy FP slope,

log Re = (0.44 ± 0.02) μ + (1.92 ± 0.12) log σv + CFP , (20)

with μ being the surface mass density (equation 3). The difference
in FP parameters between the dark matter haloes and those inferred
for the observed cluster sample (see equation 16) formed a key
aspect of their study. They suggest that a mass-dependent cluster
M/L

(M/L) ∝ M0.8 (21)

would be able to explain the observed cluster FP. Interestingly, this
is markedly different from that inferred for early-type galaxies. Of
course there is no obvious reason why the FP for galaxies should
have any bearing on the FP for clusters. Indeed, as we shall see for
the ENACS sample, its FP parameter values seem to be irreconcil-
able with the virial theorem.

3.4 Determination of scaling relations

For the sample of N cluster-sized haloes in each simulation, we study
the scaling relations between their size r, mass M – or equivalent
surface mass density μ – and velocity dispersion σ (note that N is
in general different for each cosmology). Given the inferred mass
M (equation 2), velocity dispersion σ v (equation 4) and the mean
harmonic radius rh (equation 5) of the cluster haloes, we find the
scaling relation parameters by linear fitting of the relations.

Sample selection effects play a complex role in the analysis of
real data samples (La Barbera et al. 2003). Fortunately, the issue
is far simpler when analysing clusters found in N-body models
where the only selection criterion is a mass cut-off imposed by

the cluster finding algorithm. We deal with that simply by mak-
ing the mass of the cluster the independent variable in all fits
where relevant: this eliminates biases introduced through this object
selection.

3.4.1 Kormendy relation

For the Kormendy relation, we fit

log r = a log M + Ca (22)

to the N data points (log ri, log Mi) of the halo sample. As a measure
for the significance of the fit, we use the standard deviation SK,

SK =
√√√√ 1

(N − 1)

N∑
i

(log ri − a log Mi − Ca)2. (23)

3.4.2 Faber–Jackson relation

Along the same line, the FJ relation is determined on the basis of
the fit

log σv = b log M + Cb . (24)

As a measure for the significance of the fit, we use the standard
deviation SFJ,

SFJ =
√√√√ 1

(N − 1)

N∑
i

(log σv,i − b log Mi − Cb)2. (25)

3.4.3 Fundamental Plane

Instead of fitting the FP in the form of equation (1), we do it in
the way suggested by the observational work, i.e. using the surface
mass density μ and velocity dispersion σ v as free parameters from
which we determine a model for the radius,

log r = cμ + d log σv + CFP . (26)

In this, μ is the magnitude-scale surface mass density (equation 3).
Although there are errors in determining both σ v and μ, they are
very small when compared with the dispersion about the FP. By
fitting the parameters c and d this way we solve problems regarding
biases in the mass (luminosity) selection.

As a measure for the significance of the FP fit, we use the standard
deviation of the N simulation cluster haloes perpendicular to the
plane,

SFP =
√√√√ 1

(N − 2)

N∑
i

(log ri − cμi − log σv − CFP)2 . (27)

The thickness wFP of the FP is estimated on the basis of the perpen-
dicular distances of the cluster haloes to the fitted plane:

wFP =
√∑

D2
⊥

N
, (28)

where N is the number of cluster haloes in the sample and D⊥ is
the perpendicular distance of a point to a plane

D⊥ = cμ + d log σv + CFP − log rh

(c2 + d2 + 1)1/2
. (29)
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4 SCALING R ELATIONS IN DIFFERENT
COSMOLOGIES: z = 0

We first investigate the scaling relations of the cluster dark matter
haloes in our cosmological models at the current epoch, z = 0,
and look for possible systematic differences between the parameter
values and FP thickness as a function of the cosmology. The pa-
rameters of the resulting linear fits, to be discussed in the following
sections, are listed in Table 3.

4.1 Kormendy relation

Fig. 3 shows the relation between the mean harmonic radius rh

of each cluster halo and their mass M (see Section 2.3). Each
of the four panels depicts the relation for the haloes in one
particular simulated cosmology. The top-left panel shows the
SCDM cosmology, the top-right one the �CDMO2 model, the
bottom-left one the �CDMF2 model and the bottom-right one the
�CDMC2 model.

In each cosmology, there is a strong and systematic almost linear
relation between log M and log rh: the Kormendy relation appears
to be a good description for all situations. A visual comparison
between SCDM relation (top-left panel), the �CDMO2 relation
(top-right panel) and the �CDMF2 relation (bottom-left panel)
shows that clusters of comparable mass have a larger size in the
low-�m cosmology than in the ones with a higher density value. In
other words, clusters are more compact in the SCDM cosmology.

Not unexpectedly we find objects of a higher density in higher �m

models.
When fitting the plotted point distributions, we infer the pa-

rameter values listed in Table 3. In each of the panels in Fig. 3,
we plotted the linear fits for all of the four depicted cosmologies.
We find similar slopes for all cosmologies, of the order of a ∼
0.36–0.38. This seems to imply that the mean density 〈ρ(rh)〉 ∝
M−0.1: more massive haloes have a slightly lower average density
(see also Lanzoni et al. 2004). To investigate the dependence of
the Kormendy parameter a on the cosmology in Fig. 4, we have
plotted the slope a as a function of the average mass density pa-
rameter �m (top panel), as a function of the cosmological constant
�� (central panel) and as a function of the cosmic curvature, in
terms of �total = �m + �� (lower panel). There is no evidence
for any systematic trends of the Kormendy parameter as a func-
tion of cosmology. No evidence for an influence of either cosmic
density �m and �� on the internal structure of the haloes could be
detected.

4.2 Faber–Jackson relation

Fig. 6 shows the Faber–Jackson relation: the relation between the
mass M and the velocity dispersion σ v of the cluster haloes (see
Section 2.3). Like in Fig. 3, each of the four panels corresponds
to one particular simulated cosmology: SCDM (top-left panel),
�CDMO2 (top-right panel), �CDMF2 (bottom-left panel) and
�CDMC2 (bottom-right panel).

Figure 3. The Kormendy relation. Each panel plots the relation between mean harmonic radius rh and mass M of the cluster-sized dark haloes in the simulations
corresponding to one particular cosmology. Going from top-left to bottom-right panels, these are SCDM, �CDMO2, �CDMF2 and �CDMC2. In each of the
panels, we have superimposed the fitted Kormendy relation for the corresponding model and for �CDMF2 as comparison.
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Cosmology and cluster halo scaling relations 1325

Figure 4. Inferred parameter a for the Kormendy relation (equation 22) as
a function of �m (top panel), �� (central panel) and �m + �� (bottom
panel). The bars represent the 1σ uncertainty range around the estimated
parameter.

For comparison, in each of the panels we show the line of the
�CDMF2 model corresponding to the linear fit of this relation in
each of the depicted cosmologies. The M–σ v relation is clearly well
fitted by the Faber–Jackson like relation. It is considerably tighter
than the equivalent Kormendy relation.

It is also interesting to note that, as with the Kormendy relation,
we do not find any significant dependence of the FJ relation on the
underlying cosmology: the slope b in all cases is of the order of
b ∼ 0.35 (see Table 3). We also did not find any dependence on ��

or �total (see Fig. 5).
Although the difference between the inferred value of b ∼ 0.35

in most cosmologies and the value of b = 0.33 expected for
virialized perfectly homologous systems (see equation 19) is not
really significant, the consistent and systematic value b > 0.33
might be suggestive for a weakly homologous population along
the lines described in , for example, Bertin, Ciotti & Del Principe
(2002).

4.3 Fundamental Plane

The Kormendy relation and the Faber–Jackson relation are two-
dimensional projections of an intrinsically three-dimensional rela-

Figure 5. Inferred scaling parameter b for the FJ relation as a function of
three different parameters: �m (top panel), �� (central panel) and �m +
�� (bottom panel). The bars represent the 1σ uncertainty range around the
estimated parameter.

tion between mass M, size r and velocity dispersion σ v of the haloes
(see Section 2.3). Each of the four panels. By implication, the spread
of the FP relation should be less than that of each of the previous
two relations.

The FP obtained for the same cosmologies as shown in Figs 3
and 6 (SCDM, �CDMO2, �CDMF2 and �CDMC2) is illustrated
in Fig. 7. In each of the frames, we have plotted the harmonic radius
rh of the haloes against the quantity Y = cμ + d log σv + CFP on
a log–log plot (see Section 4.4 and Fig. 8 for scaling relations for
alternative radius definition). The parameters c and d in the latter
quantity, Y , combining the surface mass density μ and the velocity
dispersion σ v of each halo are the best-fitting FP parameters for the
corresponding cosmology (see Table 3).

The galaxy clusters in each cosmology do indeed seem to popu-
late a tightly defined plane. The point clouds in each of the frames
confirm our expectation that they should have a much lower scatter
around the plane than in the case of the Kormendy and Faber–
Jackson relation (see Table 2).

From Table 3, we find a surprising level of consistency between
the FPs in each of the cosmologies. We find that the inferred pa-
rameters are close to the one theoretically expected for perfectly
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1326 P. A. Araya-Melo, R. van de Weygaert and B. J. T. Jones

Figure 6. The FJ relation. Each panel plots the relation between the velocity dispersion σ v and the mass M of the cluster-sized dark haloes in the simulations
corresponding to one particular cosmology. Going from top-left to bottom-right panels, these are SCDM, �CDMO2, �CDMF2 and �CDMC2. In each of the
panels, we have superimposed the fitted FJ relation for the corresponding model and for �CDMF2 for comparison.

homologous virialized clusters haloes. The inferred scaling param-
eter c for the surface density μ hovers around 0.38–0.42, close to the
theoretical value c ≈ 0.4 (M ∝ rhσ

2
v). The difference is somewhat

larger for the parameter d, implying that the velocity dispersion
scaling has a difference of ∼0.15–0.25 from the theoretical value
of 2.

As can be seen in both Table 2 and Fig. 7, there is hardly any
variation between the FP relations in the different cosmologies:
they almost all coincide. This is certainly true concerning the FP
parameters c and d. The top two panels of Fig. 9 do confirm the
impression that there is no systematic difference as a function of �m

and/or ��. This in itself is a strong argument against differences in
the scaling relation parameters being due to a partial or incomplete
level of virialization, as was claimed by Adami et al. (1998).

One possible difference between the FP in different cosmologies
may concern its thickness wFP. Inspection of Fig. 7 does suggest
a marginally lower thickness of the FP for Universes with a low
�m ∼ 0.1. There is no detectable effect at all with respect to the
cosmological constant ��. We might understand a dependence on
�m, or cosmological constant ��, in terms of the ongoing evolution
of the cluster population. In low-�m Universes – and in high-��

universes – all clusters formed at high redshift and have since had
ample time to reach full virialization and hence tighten the corre-
sponding FP. In high-�m Universes, clusters would still undergo
a substantial levels of merging and accretion, both of which may
affect the virial state of the cluster. Our computer experiments do
not seem to find any strong and significant dependence on overall
cosmology.

We investigate the relationship between the FP thickness and the
dynamical state of the cluster in more detail in Section 6.

Finally, we can try to relate the FP (μ, rh, σ v) of our simulated
cluster samples to the observationally measured (L, Re, σ v) plane,
for example L∝R1.19 σ 0.91 found for the ENACS survey. We can ask
whether the difference can be ascribed solely to a mass-dependent
M/L.

4.4 Scaling relations for alternative radius definition

Apart from the mean harmonic radius that we have used as a mea-
sure of halo size in the previous sections, we have also assessed the
viability of the scaling relations in case of alternative size defini-
tions. In Table 4, we list the resulting parameters for the Kormendy
relation and the FP in the case of using the half-mass radius rhalf .

The parameters for the Kormendy relation hardly differ from the
ones inferred on the basis of the mean harmonic radius. However,
the inferred FP parameters do differ significantly from the ones in-
ferred above on the basis of the mean harmonic radius. The change
in scaling parameter values may be ascribed to the use of quantities
that probe different aspects of the structure and dynamics of the
haloes. In an extreme situation, this might have disrupted the scal-
ing relations. Our finding shows that the Kormendy relation still
holds, while the FP relation still holds but in a slightly different
guise. It may be an indication for our contention that haloes do not
form a perfectly homologous population. Size measures sensitive to
different aspects of the haloes’ internal mass distribution may then
result in somewhat different scaling properties. In this respect, we
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Cosmology and cluster halo scaling relations 1327

Table 2. Parameters of the scaling relations derived for the galaxy clusters in each of the simulated cosmological simulations.

rh ∝ Ma σ ∝ Mb log rh = cμ + d log σ + CFP

Model �m �� a SK b SFJ c σ c d σ d S wFP

(10−2) (10−2) (10−3)

SCDM 1 0 0.38 0.06 0.33 0.03 0.37 0.31 1.78 1.14 0.03 14.03
OCDM01 0.1 0 0.34 0.05 0.37 0.03 0.35 1.73 1.60 8.27 0.02 8.57
OCDM03 0.3 0 0.36 0.05 0.33 0.03 0.38 1.10 1.76 4.13 0.03 13.41
OCDM05 0.5 0 0.37 0.05 0.33 0.03 0.37 0.53 1.79 2.01 0.03 12.24
�CDMO1 0.1 0.5 0.35 0.05 0.38 0.03 0.37 1.55 1.60 7.56 0.02 7.51
�CDMO2 0.1 0.7 0.38 0.05 0.35 0.03 0.38 1.90 1.66 8.84 0.02 8.44
�CDMF1 0.1 0.9 0.35 0.05 0.36 0.03 0.38 1.64 1.69 7.93 0.01 6.97
�CDMO3 0.3 0.5 0.36 0.05 0.34 0.03 0.41 1.03 1.86 3.88 0.03 11.43
�CDMF2 0.3 0.7 0.36 0.05 0.33 0.03 0.41 1.11 1.88 4.01 0.02 11.23
�CDMC1 0.3 0.9 0.34 0.05 0.34 0.03 0.42 1.19 1.92 4.33 0.03 11.09
�CDMF3 0.5 0.5 0.35 0.05 0.34 0.03 0.38 0.56 1.81 2.10 0.03 11.75
�CDMC2 0.5 0.7 0.35 0.05 0.34 0.03 0.38 0.57 1.82 2.14 0.03 11.66
�CDMC3 0.5 0.9 0.34 0.05 0.34 0.03 0.39 0.61 1.83 2.31 0.03 12.24

Note. rh is the mean harmonic radius of the cluster. a is the scaling parameter for the Kormendy relation, b is the scaling
parameter for the FJ relation and c and d are the scaling parameters for the FP. σ is the standard error in each of the scaling
relation parameters, S is the corresponding standard error/significance of the fit.

agree with the conclusions of Adami et al. (1998) and Lanzoni et al.
(2004).

See Sections 6 and 7 for a discussion of the relationship between
the radii rhalf and rh, where we show that it is a consequence of the
cluster building process.

5 EVO L U T I O N O F SC A L I N G R E L AT I O N S

In the previous sections, we have extensively studied the scaling
relations at the current cosmic epoch z = 0. We have also noted
that there are differences between the scaling relation parameters
that we find in our simulations and those for perfect virialized and
homologous systems. This makes it interesting to trace the evolution
of the different scaling relations.

In this section, we investigate the evolution of the scaling relations
as a function of redshift and as a function of cosmic look-back time.
While observers usually think in terms of redshift, it is important to
appreciate that a given redshift corresponds to an entirely different
dynamical epoch in different cosmologies. Given the same Hubble
parameter, the age of the Universe is a sensitive function of the
cosmic density parameter �m and even more so of the cosmological
constant. As for the latter, we have to realize that the change in
cosmic time as a function of the cosmological constant is the most
important influence of �. To give an appreciation of the differences
in cosmic time for a given redshift in the different cosmologies, we
refer to Table 3.

We have probed the scaling relations over a range of redshifts
from z = 4 to 0 and over a range of cosmic look-back time going
from 1 to 10 Gyr. The evolution of the fitted scaling parameters as

Table 3. Cosmic times in Gyr and the corresponding redshift for a
set of four reference cosmological models.

Cosmic time SCDM �CDMO2 �CDMF2 �CDMC2

2.36 1.49 4 2.71 2.21
3.26 1.01 2.92 1.98 1.60
4.06 0.74 2.35 1.56 1.24
5.07 0.50 1.83 1.19 0.93
9.31 0 0.71 0.38 0.24

a function of redshift is shown in the left-hand column of Fig. 10.
The corresponding evolution as a function of cosmic look-back time
can be found in the right-hand column. The Kormendy parameter
a is shown in the top panels, the Faber–Jackson parameter b in the
centre panels and the FP parameters c and d in the bottom panels.
Each different cosmology is represented by a different line style,
listed in the insert at the top-left frame.

5.1 Evolution of the Kormendy relation

For all cosmologies, the evolution of the Kormendy relation is
marginal at best. In the case of the low-�m �CDMO2 cosmology,
we cannot discern any significant change of the parameter a (this
may in part be due to the large uncertainties in the calculated pa-
rameter resulting from the low number of haloes in this simulation).
In the case of the other cosmologies, we find no notable change of
a before a redshift z ≈ 2, followed by a mild increase from a ≈
0.3 to 0.38 at z ≈ 0. This is also clearly visible when assessing the
evolution in terms of cosmic time, as can be seen in the top-right
panel.

5.2 Evolution of the Faber–Jackson relation

Evolutionary trends for the FJ relation are comparable to that seen
in the Kormendy relation. No discernible trends are found in the
open cosmology, while all of the other high-density Universes do
show a mild decrease from b ≈ 0.35 at z ≈ 2 to b ≈ 0.32 at z ≈
0. When assessing in terms of cosmic time (centre-right panel), we
observe a near uniform increase of b over the last 8 Gyr.

In most studied cosmologies, with the possible exception of the
�CDMO2 cosmology, we find a marginal trend of the FP parameter
c to decrease for z < 2, more or less in the past ∼6–7 Gyr. At earlier
epochs, such a trend is entirely absent. No significant evolution of
the FP parameter d can be observed in Fig. 10.

5.3 Evolution of the Fundamental Plane

No significant evolution has been found for the FP parameters c and
d (see Fig. 10, lower panels). Evolution of the FP mainly concerns
its thickness.
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Figure 7. The FP. Each panel plots the relation between harmonic radius rh and the quantity Y = cμ + d log σ . Combining the surface mass density μ and
velocity dispersion σ v, the scaling parameters c and d are the ones inferred from the FP fitting procedure. Top-left panel: the relation between harmonic halo
radius rh and Y for the cluster halo sample in the SCDM simulation. Top-right panel: for the haloes in the �CDMO2 simulation. Bottom-left panel: for the
haloes in the �CDMF2 simulation. Bottom-right panel: for the haloes in the �CDMC2. The superimposed lines in each panel represent the relation for the
fitted FP for the corresponding cosmology. Note that, by definition, each of these fitted lines should have slope unity.

In Fig. 11, we show the development of the FP thickness as a
function of cosmic expansion factor aexp(t) = 1/(1 + z) for four
cosmological models, and in Figs 12 and 13 we show the evolution
of the spread of points with the FP as a function of redshift in the
�CDMF2 model.

We see a systematic increase of the FP thickness over the whole
cosmic evolution in the case of the high-�m SCDM cosmology.
While we do see a rise of the FP thickness before aexp < 0.5 in the
�CDMF2 and �CDMC2 cosmologies, after that time the increase
levels off and may even flatten completely. Note, however, that these
simulations do not attain sufficient halo mass resolution at higher
redshifts: in these cosmologies, haloes still are low-mass objects
at these epochs. One exceptional cosmology is that of the low-�m

Universe �CDMO2. Except for a rather abrupt and sudden jump
in the FP thickness at aexp ∼ 0.3, there is no notable change at later
epochs. By aexp = 0.3, nearly all its clusters are in place and define
an FP that does not undergo any further evolution.

In summary, the trend seems to be for initial increase of the
FP thickness followed by a convergence to a nearly constant value.
The epoch of convergence is later for higher values of �m; while the
thickness remains constant for the low-�m �CDMO2 cosmology,
it involves a slow but continuous increase in the SCDM cosmology.

On the basis of their study of galaxy merging, Nipoti, Lon-
drillo & Ciotti (2003) argued that the disposition of galaxies in
the FP is not simply a realization of the virial theorem, but con-
tains additional information on galaxy structure and dynamics. This

should be reflected in the location of the halo population within
the FP.

Figs 12 and 13 show how the location of the clusters within the
plane shifts as time proceeds. The colour scheme is the same as for
Fig. 2. Fig. 12 shows the location of the clusters in the �CDMF2
cosmology in the FP inferred for the current epoch, i.e. at redshift
z = 0,

log rh = 0.41 μ + 1.88 log σv + CFP,L . (30)

To locate their position within the FP, we use the (artificial) coor-
dinates F1 and F2 of the halo points with respect to two mutually
perpendicular normalized vectors in the FP at z = 0, with respect to
the coordinate system defined by the FP quantities (log rh, μ, log σ v)
(note that F1 and F2 do not have a specific physical significance).
From the panels in the figure, we see that the evolution of haloes
involves a gradual shift along an almost universal FP. It also shows
that the halo population seems to evolve from a more scattered and
somewhat looser one into a tightly elongated point cloud at the cur-
rent epoch, providing interesting clues towards understanding the
cluster virialization process.

In the same vein, Fig. 13 follows the changing location of clusters
in the SCDM cosmology in the corresponding FP at z = 0,

log rh = 0.37 μ + 1.78 log σv + CFP,S . (31)

Similar to the �CDMF2 cosmology, we find that the cluster point
cloud appears to assume a clearer mass stratification as time pro-
ceeds. While the population of clusters in the SCDM cosmology
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Cosmology and cluster halo scaling relations 1329

Figure 8. The FP relation of dark haloes in the SCDM (left-hand panels) and �CDMO2 (right-hand panels) cosmology, using the half-mass radius rhalf (top
row) and the harmonic radius rh (bottom row). Plotted are mass M versus the FP quantity Y = cμ + d log σ , with c and d being the scaling parameters inferred
from the (linear) fitting procedure. The lines represent the best-fitting FP relations.

also appears to shift its location along the FP as it evolves, we do
not find a trend towards a more tightly point cloud that we see in the
LCDMF2 cosmology. We will investigate these evolutionary trends
in more detail in an upcoming study, we have found indications for
a possible influence of the different cluster halo merging histories
in SCDM and �CDMF2 in explaining the different behaviours of
the cluster point clouds in the FP.

6 ME R G I N G A N D AC C R E T I O N D E P E N D E N C E

Figs 10 and 11 show that the evolution of the parameters defining
these relationships is very erratic. This testifies to the fact that in
hierarchical structure formation scenarios the formation and evolu-
tion of haloes are hardly quiescent and steadily progressing affairs.
Rather, haloes grow in mass by steady accretion of matter from
its surrounding as well through the merging with massive peers.
Even the accretion is not a continuous and spherically symmetric
process: most matter flows in a strongly anisotropic fashion through
filamentary extensions into the neighbouring large-scale matter dis-
tribution. As a result, we can expect that many haloes will not have
settled into a perfect virial state. This will certainly be the case
for haloes that recently suffered a major merger with one or more
neighbouring clumps.

The detailed accretion and merging history is a function of the
underlying cosmology. Low-density cosmologies or cosmologies
with a high cosmological constant will have frozen their structure
formation at early epochs. The haloes that had formed by the time of
that transition will have had ample time to settle into a perfect viri-

alized object. Also, there is a dependence on the power spectrum of
the corresponding structure formation scenario. Power spectra with
a slope n < −1.5 (at cluster scales) will imply a more homologous
collapse of the cluster-sized clumps, less marked by an incessant
bombardment by smaller clumps. It may be clear that a more vio-
lent life history of a halo will usually be reflected in a substantial
deviation from a perfect virial state.

In order to investigate the implications of a difference in accretion
or merging history of haloes, we have split the samples of cluster
haloes in each of our cosmologies into a merging sample and an
accretion sample. Possible differences in their virial state should be
reflected in the quality of the scaling relations, in particular that of
the thickness of the FP.

The merger sample consists of those haloes that suffered a merger
with another halo that contained at least 30 per cent of its mass.
Fig. 14 shows two examples of haloes in the �CDMF2 cosmology.
The top sequence of four panels shows the evolution of a quies-
cently evolving accretion halo, by means of the particle distribution
in a 5 h−1 Mpc box (comoving size) around the cluster core, at z =
2.61, 1.61, 0.89 and 0.00. The circles indicate the location of the
HOP identified haloes, with the size of the circle proportional to the
radius of the halo (note that the overlap of circles is due to the pro-
jection of the halo spheres). The lower group of four panels shows
the particle distribution at the same redshifts for a halo belonging
to the merging sample. Its gradual hierarchical buildup is directly
visible as the continuous infall of clumps at each time-step.

In Fig. 15, we show the evolution of the thickness of the FP for
each of the two samples in the four indicated cosmologies. Note
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Figure 9. Top panel: FP parameters c (left-hand axis, solid circles) and
d (right-hand axis, solid triangles) as a function of �m. Second panel: FP
parameters c (left-hand axis, solid circles) and d (right-hand axis, solid
triangles) as a function of ��. Third panel: thickness wFP of the FP, i.e. rms
scatter of the FP relation as a function of �m. Bottom panel: thickness wFP

of the FP, i.e. rms scatter of the FP relation as a function of ��.

that our simulations do not have sufficient resolution for recon-
structing the precise merging or accretion history before aexp =
0.3–0.4, so that we may not draw conclusions on the rise of the FP
thickness up to that epoch. Also, in the case of the �CDMO2
scenario we do not have enough cluster haloes to be able to
detect any systematic differences between the merging and accreting
haloes.

In the more recent history, we do find some significant differences
between merging and accretion-only haloes in various cosmologies,
in particular the ones with a high �m. There does not seem to be a
systematic difference between these groups in the �CDMF2 cos-
mology. The total absence of any difference between the FP of

merging and accreting cluster haloes at present (Fig. 16) is the out-
come of an evolutionary history without any significant differences
between the two subsamples (Fig. 15, lower-left panel).

The story is quite different for the �CDMC2 and SCDM cos-
mologies. While the cluster haloes that undergo a major merger
do reveal a constantly growing FP thickness, their accretion-only
clusters do not display such a systematic increase. Instead, their
FP thickness remains lower and levels off. In other words, accretion
haloes (dotted lines) do on average display a tighter FP relation. This
is particularly true at the current epoch. Apparently, the absence of
violent mass gain in the case of accretion haloes implies that they
have more time to relax and virialize. This, in turn, is reflected in a
thickness of the FP which does not evolve any further. Interestingly,
it is also reflected in the radii of the haloes (Fig. 17): while the
harmonic and half-mass radii of accreting cluster haloes are mostly
in accordance with each other, though with a larger spread than in
the case of �CDMF2 clusters (lower panel), the SCDM haloes that
underwent major mergers do appear to be responsible for the sub-
stantial differences between the harmonic and half-mass radii that
we see in Fig. 2. From this we conclude that the accretion history is
a major factor in determining the character of the FP, via the impact
of mergers on the mass distribution within haloes and hence their
radii. We discuss this in more detail in Section 7.

The implications of this finding might be far reaching. Given
the remarkable robustness and stability of the FP, any deviation of
individual clusters from the FP may be a direct reflection of its
recent dynamical evolution. This would be true if the thickness of
the plane would be entirely due to the merger history of the clus-
ters. It is certainly a viable implication of our conclusion that the
FP’s definition – the average plane of a large sample of clusters –
is nearly unassailable while we find strong fluctuations and devi-
ations from the average FP in small samples of actively evolving
clusters.

In practice, it might mean that one could take samples of clusters
in different redshift bands and reliably average them in each band to
use the resulting FP to study redshift evolution of observed samples.
It would also mean that within each redshift band you know which
ones have had active lives.

7 R E C O N C I L I N G TH E S I M U L AT I O N S
W I T H T H E V I R I A L TH E O R E M

7.1 The virial theorem

The FP is a direct reflection of the virial theorem which, under
particular assumptions, relates the averaged velocity dispersion and
radius of a system directly to its mass. All ‘virialized’ objects will
lie on a plane defined in the space of those three variables. There is
not even any freedom in the parameters for that plane: its slope and
location are fixed for all virialized objects.

There are complications when assigning data to an FP. First, in
its simplest form, the virial theorem assumes that the virialized
objects are isolated spherical systems and, importantly, that they
are stationary. The systems we study are not spherical and they are
certainly not stationary: they are generally in a state of dynamical
evolution. The possible exception to this might be the largest most
isolated systems. Secondly, observed data do not have direct knowl-
edge of the system mass except through interpreting the light that is
observed. The universality of the FP allows us to turn the problem
around and determine the dependence of light on mass in order that
systems should fit on the FP. The simplest approach to this is to
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Table 4. Scaling relation parameters and radius definition: inferred Kormendy relation parameter a and FP parameters
c and d, based on the use of half-mass radius rhalf and harmonic radius rh. For four different cosmologies – SCDM,
�CDMO2, �CDMF2 and �CDMC3 – the scaling parameters and the corresponding goodness-of-fit S (see equations
23 and 27) are given for rhalf (top row) and rh (bottom row).

r ∝ Ma log rh = c μ + d log σ v+CFP

Model �m �� Radius a SK c d SFP

Half-mass 0.39 0.09 0.29 1.60 0.03
SCDM 1 0

Harmonic 0.38 0.06 0.37 1.78 0.03

Half-mass 0.36 0.08 0.30 1.53 0.02
�CDMO2 0.1 0.7

Harmonic 0.38 0.05 0.38 1.66 0.02
Half-mass 0.35 0.07 0.31 1.66 0.03

�CDMF2 0.3 0.7
Harmonic 0.36 0.05 0.41 1.88 0.02
Half-mass 0.35 0.08 0.30 1.63 0.03

�CDMC3 0.5 0.9
Harmonic 0.35 0.05 0.38 1.82 0.03

Figure 10. Evolution of the fitted scaling relation parameters as a function of redshift (left-hand column) and as a function of cosmic look-back time (right-hand
column). Top panels: Kormendy parameter a. Central panels: FJ parameter b. Bottom panels: FP parameters c and d.
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Figure 11. Evolution of the thickness of the FP for four different cosmolo-
gies. Note the almost consistently tighter FP for the low-�m Universe and
the modest increase of FP thickness in the other cosmologies. The SCDM,
�CDMF2 and �CDMC2 models are very similar in their behaviour. The
more erratic behaviour of the �CDMO2 may in part be due to the smaller
sample size.

assume that the M/L in the observed waveband is directly related to
mass.

There are further issues. For example, what do we mean when we
refer to ‘averages’ of quantities? Using a different averaging process
yields a different FP. There is also the fact that astrophysical systems
are observed only in projection.

Having said that, we can express the virial theorem in terms of
the variable we have used here to describe the FP. With the notation
that a virialized system of mass M has a velocity dispersion V , half-
mass radius rhalf and harmonic radius rh, we have, up to normalizing
constants,

V 2 = M

r2
h

, � = M

r2
half

, (32)

where � is the projected (surface) mass density. Eliminating M
from these and taking logs yield an expression for the FP:

log rh =
(

rh

rhalf

)
+ 2 log V + 0.4μ, (33)

where we have transformed the surface mass density � into loga-
rithmic astro-units via

μ = −2.5 log �. (34)

Figure 12. Shifting location of the cluster halo population within the FP. The depicted halo sample is the one in �CDMF2 cosmology, and is shown at four
different redshifts: z = 2.61 (top-left panel), z = 1.61 (top-right panel), z = 0.89 (bottom-left panel) and z = 0 (bottom-right panel). The abscissa and ordinate
axis are arbitrarily chosen, mutually perpendicular, axes within the FP plane defined by (log rh, μ, log σ v) at z = 0 (equation 30).
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Figure 13. Shifting location of the cluster halo population within the FP. The depicted halo sample is the one in SCDM cosmology, and is shown at four
different redshifts: z = 2.61 (top-left panel), z = 1.61 (top-right panel), z = 0.89 (bottom-left panel) and z = 0 (bottom-right panel). The abscissa and ordinate
axis are arbitrarily chosen, mutually perpendicular, axes within the FP plane defined by (log rh, μ, log σ v) at z = 0 (equation 31).

We have explicitly written equation (33) in such a way as to expose
the different roles of harmonic and half-mass (geometric) radii. The
relationship between these radii in our models is illustrated in Figs
2 and 17, the latter differentiating between merging and quiescently
accreting haloes.

7.2 Renormalizing the FP simulations

It is important to understand why the coefficients of the model FP
might differ from the expectations based on the use of the virial
theorem. Luminosity is not involved here, so we cannot appeal to
a varying {M/L}. Moreover, the model FP is well defined, so we
cannot say that this is merely a question of fitting.

There are at least two possible sources for this systematic differ-
ence between the model and the virial theorem. The first is to blame
the HOP technique and assert that it systematically underestimates
the cluster masses. The second is to say that the internal cluster prop-
erties (like velocity distribution) vary systematically with mass, so
the normalization of the virial plane is mass-dependent.

Either way, we shall model in a mass dependency and consider
this in relation to the HOP technique. The process for the variable
virial normalization is analogous.

The samples of clusters derived from these simulations are all
based on the HOP technique. There may well be a systematic bias
in the assignment of particles to clusters (see Section 2.1). As a
consequence, the radii and velocity dispersion derived for an HOP-

selected cluster will also be biased. Clearly, the bias will be more
significant for smaller systems.

In this section, we seek to account for systemic effects of using
HOP for identifying cluster membership, and derive a renormaliza-
tion procedure taking account of this and matching the data set to
the expected virial theorem FP (equation 33).

The easiest way to model this bias is to assume that the model-
based estimate (biased) for the mass, M, is related to the actual mass
M by a simple scaling relationship

M
M

∝ M α
1+α (35)

for some exponent α. The virial expression for the mass then be-
comes

V 2 =
(M

M

)
M

r2
h

= M−α M

r2
h

, (36)

where the right-hand side now refers to the quantities derived from
the model. We can eliminate M from this in terms of the model
surface mass density � = M/r2

h to give

rh =
(

rh

rhalf

) 2
1+α

V
2
(

1−α
1+α

)
�− 1

1+α . (37)

Taking logs and using μ = −2.5 log� finally yield

log rh = 2

1 + α
log

rh

rhalf
+ 2

1 − α

1 + α
log V − 0.4

1 + α
μ, (38)
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Figure 14. Accreting versus merging halo evolution: the evolution of
two different haloes in the �CDMF2 cosmology. Each panel concerns a
5 h−1 Mpc comoving size box centred at the core of the halo. The sequence
runs from z = 2.61 (top-left panel), via z = 1.61 (top-right panel), to z =
0.89 (bottom-left panel) and finally the present epoch z = 0 (bottom-right
panel). The circles indicate the location of HOP identified haloes, with the
size of the circle being proportional to the (virial) radius of the halo (over-
lapping circles are due to the projection of the corresponding spheres). Top
four panels: a quiescently evolving accreting halo. Bottom four panels: a
strongly hierarchically evolving merging halo.

which is the expression for the FP in terms of the (biased) model-
derived quantities. This should be compared with equation (33); we
see how the bias modelled by α affects the position and slope of the
virial FP.

The procedure now, for each simulation, is to select a value of
α that makes the coefficient of log V in equation (38) equal to the

virial value 2. That α then allows a calculation of the coefficient of
μ that can be compared with the value derived from the simulation.
The results for a selection of models are shown in Table 5.

The conclusion to be drawn from this is that, for each model,
there is indeed a value of the α parameter that reproduces the FP
fits for the models.

7.3 Observed cluster FP

The best available data set is the ENACS data of Adami et al. (1998).
Equation (17) describing that FP, in the current notation, reduces to

log Re = (0.49 ± 0.05)μ + (1.12 ± 0.11) log σv. (39)

There is considerable uncertainty in this relationship: the coefficient
of log σ is quite far from the ideal 2.0 and the coefficient of μ is
higher than the nominal 0.4.

The usual way to reconcile this with the virial FP is to argue that
the M/L of the cluster sample is mass-dependent:

M

L
∝ Mβ. (40)

Using an argument that parallels the derivation of equation (38), the
FP expressed in terms of velocity and surface mass density is

log rh = 2

1 + β
log

rh

rhalf
+ 2

1 − β

1 + β
log V − 0.4

1 + β
μ. (41)

The data give β = 0.28 ± 0.19 which gives rise to c = 0.31 ± 0.02,
a long way from the data-derived 0.49. It is clearly not possible to
reconcile the ENACS data with the virial theorem FP, let alone the
numerical simulations.

8 C O N C L U S I O N S A N D D I S C U S S I O N

We have studied three structural scaling relations of galaxy clus-
ters in 13 cosmological models. These relations are the Kormendy
relation, the FJ relation and the FP. Their validity and behaviour
in the different cosmological models should provide information
on the general virial status of the cluster halo population. The cos-
mological models that we studied involved a set of open, flat and
closed Universes with a range of matter density parameter �m and
cosmological constant ��.

The cluster samples are obtained from a set of N-body simulations
in each of the cosmologies. These simulations concern a box of
200 h−1 Mpc with 2563 dark matter particles. The initial conditions
were set up such that the phases of the Fourier components of the
primordial density field are the same for all simulations. In this way,
we have simulations of a comparable morphological character: the
same objects can be recognized in each of the different simulations
(be it at a different stage of development).

After running the simulations from z = 4 to the current epoch
using the GADGET2 code, we used HOP to identify the cluster haloes.
We investigated whether each halo population obeyed a mass–radius
relation akin to the Kormendy relation, a mass–velocity dispersion
relation similar to the FJ relation and a two-parameter family be-
tween mass, radius and velocity dispersion that resembles an FP
relation. We studied the dependence of the obtained scaling param-
eters as a function of the underlying cosmology and investigated
their evolution in time.

Our results can be summarized as follows.

(i) In each cosmological model, we do recover Kormendy, FJ and
FP relations for the population of cluster haloes. This is a strong
indication that the haloes are in a virialized state, as expected in
hierarchical clustering scenarios.
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Figure 15. Thickness of the FP when considering accretion (dotted lines) or mergers (solid lines).

(ii) There are significant differences between the measured pa-
rameters of the various scaling relations and those seen in the ob-
servational data. Our fit for the FP in the �CMDF2 model is

log rh = 0.41μ + 1.86 log σ + constant. (42)

This can be reconciled with the expectation from the virial theorem,
but not with the ENACS FP.

(iii) We do not find any significant dependence of the parameters
a and b of the Kormendy and FJ relations on the value of �m. There
is also no indication for any influence of �� on the scaling relations.

(iv) While the FP parameters c and d are not dependent on �m

and ��, there is a slight suggestion that the FP would have a lower
thickness for low-�m ∼ 0.1 cosmologies.

(v) With the exception of low-�m Universes, we find a mild
increase of the Kormendy parameter a and a mild decrease of the
FJ parameter b from z = 1 to the present epoch. From z = 4 to 1,
we did not find any discernable evolution.

(vi) While the FP parameters c and d, in general, do not show a
significant evolution, the higher �m cosmologies do involve a slight
decrease of FP parameter d during most recent epochs (z < 2).

(vii) The thickness of the FP does evolve significantly, with an
initial increase followed by a convergence to a more ore less constant
value. The convergence epoch is later for higher density cosmolo-
gies. This probably reflects the gradually virializing tendency of the
cluster population.

(viii) Given our expectation that there is a difference in virial
state between quiescently accreting clusters and those experienc-
ing massive mergers, we have investigated the evolution of the FP
thickness for samples of merging clusters and samples of accreting
clusters. We find that accreting clusters at recent epochs do appear

Figure 16. Comparison between the FP in the �CDMF2 cosmology for
clusters that underwent a major merger (blue dots) and clusters that followed
a more quiescent accretion history (red dots). The plot depicts the relation
between harmonic radius rh and the quantity Y = cμ + d log σ + CFP, in
which c and d are the FP scaling parameters.

to be better virialized than the merging population and that the FP
thickness is smaller in the former.

(ix) We find that for all investigated cosmologies the FP is re-
markably stable, despite the enormous evolution of the individual
systems. The only significant evolution, that of its thickness, might
be due in a large part to the importance of merging of individual
systems.
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Figure 17. Comparison between the mean harmonic and the half-mass
radii of the haloes in the SCDM (top panel) and �CDMF2 (bottom panel)
scenarios. The cluster samples are split into the clusters that underwent
a major merger (blue dots) and the ones that accreted matter in a more
quiescent fashion (red dots) (see the text for further explanation).

Table 5. Fitting-biased models to ideal virial FP. The parameter α

emulates the limitations of the HOP group finder.

Model d α c c(model)

SCDM 1.78 ± 0.01 0.058 ± 0.003 0.38 0.37 ± 0.031
�CMDF1 1.69 ± 0.084 0.084 ± 0.024 0.37 0.38 ± 0.016
�CDMF2 1.88 ± 0.04 0.031 ± 0.011 0.39 0.41 ± 0.011
�CDMF3 1.81 ± 0.02 0.050 ± 0.014 0.38 0.38 ± 0.056
OCDM01 1.60 ± 0.083 0.111 ± 0.024 0.36 0.35 ± 0.017

(x) If indeed the thickness of the FP might be entirely due to the
merger history of the cluster haloes, the distance of an individual
cluster to the FP would be a direct reflection of the cluster history.

(xi) We see direct evidence that major mergers have effected the
relationship between the galaxy haloes in the cluster in that the
relationship between the half-mass and harmonic radii is disturbed.
None the less, the evidence from the models tells us that this does
not affect the slope of the FP: clusters that have undergone major
mergers lie in the same place as those that have grown by steady
accretion.

Finally, what are desperately needed are better data on the cluster
FP. We might speculate that the distance of a cluster from the plane

defined by the data somehow reflects the evolution of the cluster, but
we will not get evidence for the hypotheses derived from numerical
experiment until there is more high-quality data.

AC K N OW L E D G M E N T S

PAAM gratefully acknowledges support by NOVA. RvdW is grate-
ful for the support and great hospitality of KIAS during the
completion of this manuscript. In addition, BJTJ gratefully ac-
knowledges the hospitality of the Kapteyn Astronomical Institute
in Groningen, and to his collaborators for their remarkable patience
in getting various parts of this paper completed.

REFERENCES

Adami C., Mazure A., Biviano A., Katgert P., Rhee G., 1998, A&A, 331,
493

Bernardi M. et al., 2003, AJ, 125, 1866
Bertin G., Ciotti L., Del Principe M., 2002, A&A, 386, 149
Binney J., Merrifield M., 1998, Galactic Astronomy/James Binney and

Michael Merrifield. Princeton Univ. Press, Princeton, NJ
Bolton A. S., Burles S., Treu T., Koopmans L. V. E., Moustakas L. A., 2007,

ApJ, 665, L105
Cappellari M. et al., 2006, MNRAS, 366, 1126
Djorgovski S., Davis M., 1987, ApJ, 313, 59
D’Onofrio M., 2008, ApJ, 685, 875
Dressler A., Lynden-Bell D., Burstein D., Davies R. L., Faber S. M., Ter-

levich R., Wegner G., 1987, ApJ, 313, 42
Eisenstein D. J., Hut P., 1998, ApJ, 498, 137
Faber S. M., Jackson R. E., 1976, ApJ, 204, 668
Faber S. M., Dressler A., Davies R. L., Burstein D., Lynden-Bell D., 1987,

in Faber S., ed., Nearly Normal Galaxies: From the Planck Time to the
Present, Vol. 8. Springer-Verlag, New York, p. 175
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