121 research outputs found

    Preparative Synthesis of an RP-Guanosine-3′,5′-Cyclic Phosphorothioate Analogue, a Drug Candidate for the Treatment of Retinal Degenerations

    Get PDF
    Post-printCyclic guanosine monophosphorothioate analogue 1a is currently showing potential as a drug for the treatment of inherited retinal neurodegenerations. To support ongoing preclinical and clinical work, we have developed a diastereoselective synthesis via cyclization and sulfurization of the nucleoside 5′-H-phosphonate monoester, which affords the desired RP-3′,5′-cyclic phosphorothioate in 9:1 ratio to the undesired SP-diastereomer. This route was made viable as a result of the silyl protection sequence used, which achieved >80% selectivity for 2′,5′-hydroxyls over 3′,5′-hydroxyls. Finally, the chromatography-free process allowed for a scale-up, as intermediates and the final product were isolated by crystallization to give 125 g of 1a (13.8% total yield) with over 99.9% HPLC purity.The authors would like to thank Professor Thorsteinn Loftsson at the University of Iceland for his continued support and guidance, particularly to O.P. as academic supervisor, and Professor Jacek Stawiński at Stockholm University for fruitful discussions. We also thank Dr. Frank Schwede at BIOLOG Life Science Institute (Bremen, Germany) for discussions about synthetic strategy as well as providing material for structural comparisons to our product. This work was supported by the European Commission (H2020-MSCA-765441; HEALTH-F2-2012-304963)Peer Reviewe

    Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis

    Get PDF
    Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue’s auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation

    Willow short-rotation production systems in Canada and Northern United States: A review

    Get PDF
    Willow short rotation coppice (SRC) systems are becoming an attractive practice because they are a sustainable system fulfilling multiple ecological objectives with significant environmental benefits. A sustainable supply of bioenergy feedstock can be produced by willow on marginal land using well-adapted or tolerant cultivars. Across Canada and northern U.S.A., there are millions of hectares of available degraded land that have the potential for willow SRC biomass production, with a C sequestration potential capable of offsetting appreciable amount of anthropogenic green-house gas emissions. A fundamental question concerning 1 sustainable SRC willow yields was whether long-term soil productivity is maintained within a multi-rotation SRC system, given the rapid growth rate and associated nutrient exports offsite when harvesting the willow biomass after repeated short rotations. Based on early results from the first willow SRC rotation, it was found willow systems are relatively low nutrient-demanding, with minimal nutrient output other than in harvested biomass. The overall aim of this manuscript is to summarize the literature and present findings and data from ongoing research trials across Canada and northern U.S.A. examining willow SRC system establishment and viability. The research areas of interest presented here are the crop production of willow SRC systems, above- and below-ground biomass dynamics and the C budget, comprehensive soil-willow system nutrient budget, and soil nutrient amendments (via fertilization) in willow SRC systems. Areas of existing research gaps were also identified for the Canadian context
    corecore