12 research outputs found

    Introduction

    No full text

    'North Sea' progressive myoclonus epilepsy: phenotype of subjects with GOSR2 mutation

    No full text
    We previously identified a homozygous mutation in the Golgi SNAP receptor complex 2 gene (GOSR2) in six patients with progressive myoclonus epilepsy. To define the syndrome better we analysed the clinical and electrophysiological phenotype in 12 patients with GOSR2 mutations, including six new unrelated subjects. Clinical presentation was remarkably similar with early onset ataxia (average 2 years of age), followed by myoclonic seizures at the average age of 6.5 years. Patients developed multiple seizure types, including generalized tonic clonic seizures, absence seizures and drop attacks. All patients developed scoliosis by adolescence, making this an important diagnostic clue. Additional skeletal deformities were present, including pes cavus in four patients and syndactyly in two patients. All patients had elevated serum creatine kinase levels (median 734 IU) in the context of normal muscle biopsies. Electroencephalography revealed pronounced generalized spike and wave discharges with a posterior predominance and photosensitivity in all patients, with focal EEG features seen in seven patients. The disease course showed a relentless decline; patients uniformly became wheelchair bound (mean age 13 years) and four had died during their third or early fourth decade. All 12 cases had the same variant (c.430G>T, G144W) and haplotype analyses confirmed a founder effect. The cases all came from countries bounding the North Sea, extending to the coastal region of Northern Norway. 'North Sea' progressive myoclonus epilepsy has a homogeneous clinical presentation and relentless disease course allowing ready identification from the other progressive myoclonus epilepsies.Lysa Boissé Lomax...Jozef Gecz... et al

    Correction: The landscape of epilepsy-related GATOR1 variants

    No full text
    International audienceThe original version of this article contained an error in the spelling of the author Erik H. Niks, which was incorrectly given as Erik Niks. This has now been corrected in both the PDF and HTML versions of the article

    The landscape of epilepsy-related GATOR1 variants

    Get PDF
    Purpose: To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway Methods: We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants. Results: The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign. Conclusion: Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP

    Correction to: The landscape of epilepsy-related GATOR1 variants

    No full text
    International audienceThe original version of this Article contained an error in the author list where the corresponding author Stéphanie Baulac was repeated twice. This has now been corrected in the HTML, the PDF was correct at the time of publication
    corecore