81 research outputs found

    Exploring the Nature of Space for Human Behavior in Ordinary Structured Environments

    Get PDF
    What is the nature of the built environment? Built environments are the settings within which people carry out activities and emerge from the specific combining of spatial conditions with specific social content for the setting. The social content and the spatial conditions form a core-defining relationship that serves to distinguish one structured setting from another. A core-defining relationship such as this refers to the essence of the built environment. What are the implications for human behavior that emerge from conceptualizing built environments in this manner? I argue that space, through its essential relationship with the contexts of daily living (i.e. social content), qualifies, or transforms how environmental information of those conditions appear. In order to interpret and recognize inherent meaning within those spatial conditions, people rely on a shared set of cultural norms and expectations concerning the built environment. Should the relationship between the social content of a setting and the spatial conditions that structure a setting be disrupted or misunderstood, users of the setting will have difficulty interpreting and carrying out their intended activities. To test this assumption, the case study assessed participants’ evaluations of images of ordinary settings in two presentations, first where the spatial conditions remained unaltered and second where the spatial conditions were disrupted in a random non-meaningful manner. A content analysis was employed to generalize participant narratives and provide necessary data to perform a two-factor analysis that assessed the potential for groupings among participants’ evaluation of the images. Results of the study suggest that people rely on spatial conditions for interpreting built environments in their consideration for the potential to carryout activities and social engagements. When spatial conditions are lacking or meaningless, participants express frustration and confusion and are unable to articulate how they might engage in social activity within the image. Further, the study illustrates that the social-spatial core relationship is a necessary component in the environmental knowing process for built environments. Adviser: Douglas Amede

    Challenges of Documenting Historic Water Systems Integrating Open-Source Water Data With Archaeological Datasets in Utah

    Get PDF
    Geospatial research in archaeology often relies on datasets previously collected by other archaeologists or third-party groups, such as state or federal government entities. This article discusses our work with geospatial datasets for identifying, documenting, and evaluating prehistoric and historic water features in the western United States. As part of a project on water heritage and long-term views on water management, our research has involved aggregating spatial data from an array of open access and semi-open access sources. Here, we consider the challenges of working with such datasets, including outdated or disorganized information, and fragmentary data. Based on our experiences, we recommend best practices: (1) locating relevant data and creating a data organization method for working with spatial data, (2) addressing data integrity, (3) integrating datasets in systematic ways across research cohorts, and (4) improving data accessibility

    Prehistoric Irrigation in Central Utah: Chronology, Agricultural Economics, and Implications

    Get PDF
    In 1928, Noel Morss was shown “irrigation ditches” along Pleasant Creek on the Dixie National Forest near Capitol Reef National Park, Utah, by a local guide who contended they were ancient. We relocated the site and mapped the route of an unusual mountain irrigation canal. We conducted excavations and employed OSL and AMS 14C showing historic irrigation, and an earlier event between AD 1460 and 1636. Geomorphic evidence indicates that the canal existed prior to this time, but we cannot date its original construction. The canal is 7.2 km long, originating at 2,450 m asl and terminating at 2,170 m asl. Less than half of the system was hand constructed. We cannot ascribe the prehistoric use-event to an archaeological culture, language, or ethnic group, but the 100+ sites nearby are largely Fremont in cultural affiliation. We also report the results of experimental modeling of the capital and maintenance costs of the system, which holds implications for irrigation north of the Colorado River and farming during the Little Ice Age. The age of the prehistoric canal is consistent with a fragmentary abandonment of farming and continuity between ancient and modern tribes in Utah

    Comparison of Fuzzy Clustering Methods and Their Applications to Geophysics Data

    Get PDF
    Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to have some knowledge of the outcome a priori in order to determine howmany clusters to look for. Additionally, iterative algorithms choose the optimal number of clusters based on one of several performance measures. In this study, the authors compare the performance of three algorithms (fuzzy c-means, Gustafson-Kessel, and an iterative version of Gustafson-Kessel) when clustering a traditional data set as well as real-world geophysics data that were collected from an archaeological site in Wyoming. Areas of interest in the were identified using a crisp cutoff value as well as a fuzzy α-cut to determine which provided better elimination of noise and non-relevant points. Results indicate that the α-cut method eliminates more noise than the crisp cutoff values and that the iterative version of the fuzzy clustering algorithm is able to select an optimum number of subclusters within a point set (in both the traditional and real-world data), leading to proper indication of regions of interest for further expert analysis

    Comparison of Fuzzy Clustering Methods and Their Applications to Geophysics Data

    Get PDF
    Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to have some knowledge of the outcome a priori in order to determine howmany clusters to look for. Additionally, iterative algorithms choose the optimal number of clusters based on one of several performance measures. In this study, the authors compare the performance of three algorithms (fuzzy c-means, Gustafson-Kessel, and an iterative version of Gustafson-Kessel) when clustering a traditional data set as well as real-world geophysics data that were collected from an archaeological site in Wyoming. Areas of interest in the were identified using a crisp cutoff value as well as a fuzzy α-cut to determine which provided better elimination of noise and non-relevant points. Results indicate that the α-cut method eliminates more noise than the crisp cutoff values and that the iterative version of the fuzzy clustering algorithm is able to select an optimum number of subclusters within a point set (in both the traditional and real-world data), leading to proper indication of regions of interest for further expert analysis

    LA-ICP-MS Analysis of Quartzite from the Upper Gunnison Basin, Colorado

    Get PDF
    We report the results of LA-ICP-MS analysis of 402 quartzite samples representing 48 collection loci in the Upper Gunnison Basin (UGB), Colorado and determine the extent to which the sources can be geochemically discriminated from one another using this non-destructive technique. The ability to differentiate among the sources would open the door to provenance studies of the quartzite chipped-stone tools and debitage that constitute 95% or more of most of the 3000-plus prehistoric site assemblages documented in the UGB. Our samples represent prehistorically quarried and non-quarried quartzite sources, including outcrop (primary) and gravel (secondary) deposits. The results reveal spatial and chronological trends in quartzite elemental composition that can be exploited for provenance determinations of quartzite artifacts from UGB sites, albeit using an assemblage-based sourcing strategy that differs from the familiar approach of “matching” obsidian artifacts to their statistically likeliest geological source. We offer a preliminary version of a sourcing protocol for UGB quartzite

    Elevated BMI Is Associated With Decreased Blood Flow in the Prefrontal Cortex Using SPECT Imaging in Healthy Adults

    Get PDF
    Obesity is a risk factor for stroke and neurodegenerative disease. Excess body fat has been linked to impaired glucose metabolism, insulin resistance, and impulsivity and may be a precursor to decline in attention and executive cognitive function. Here, we investigated the effects of high BMI on regional cerebral blood flow (rCBF) using single photon emission computed tomography (SPECT) imaging in healthy subjects. A total of 16 adult men and 20 adult women were recruited from the community between January 2003 and July 2009 as part of a healthy brain study (HBS) conducted at the Amen Clinics, a private medical facility. Participants in the study were screened to exclude medical, neurological, and psychiatric conditions, including substance abuse. Subjects were categorized as normal or overweight according to BMI. Using a two sample t-test, we determined the effects of BMI on rCBF in normal vs. overweight subjects. Subjects were matched for age and gender. Statistical parametric mapping (SPM) revealed a higher BMI in healthy individuals that is associated with decreased rCBF in Broadmann areas 8, 9, 10, 11, 32, and 44, brain regions involved in attention, reasoning, and executive function (P < 0.05, corrected for multiple comparisons). We found that an elevated BMI is associated with decreased rCBF in the prefrontal cortex of a healthy cohort. These results indicate that elevated BMI may be a risk factor for decreased prefrontal cortex function and potentially impaired executive function

    Preference for Safe Over Risky Options in Binge Eating.

    Get PDF
    Binge eating has been usually viewed as a loss of control and an impulsive behavior. But, little is known about the actual behavior of binging patients (prevalently women) in terms of basic decision-making under risk or under uncertainty. In healthy women, stressful cues bias behavior for safer options, raising the question of whether food cues that are perceived as threatening by binging patients may modulate patients' behaviors towards safer options. A cross-sectional study was conducted with binging patients (20 bulimia nervosa (BN) and 23 anorexia nervosa binging (ANB) patients) and two control groups (22 non-binging restrictive (ANR) anorexia nervosa patients and 20 healthy participants), without any concomitant impulsive disorder. We assessed decisions under risk with a gambling task with known probabilities and decisions under uncertainty with the balloon analog risk taking task (BART) with unknown probabilities of winning, in three cued-conditions including neutral, binge food and stressful cues. In the gambling task, binging and ANR patients adopted similar safer attitudes and coherently elicited a higher aversion to losses when primed by food as compared to neutral cues. This held true for BN and ANR patients in the BART. After controlling for anxiety level, these safer attitudes in the food condition were similar to the ones under stress. In the BART, ANB patients exhibited a higher variability in their choices in the food compared to neutral condition. This higher variability was associated with higher difficulties to discard irrelevant information. All these results suggest that decision-making under risk and under uncertainty is not fundamentally altered in all these patients

    Body image, visual working memory and visual mental imagery

    Get PDF
    Body dissatisfaction (BD) is a highly prevalent feature amongst females in society, with the majority of individuals regarding themselves to be overweight compared to their personal ideal, and very few self-describing as underweight. To date, explanations of this dramatic pattern have centred on extrinsic social and media factors, or intrinsic factors connected to individuals' knowledge and belief structures regarding eating and body shape, with little research examining links between BD and basic cognitive mechanisms. This paper reports a correlational study in which visual and executive cognitive processes that could potentially impact on BD were assessed. Visual memory span and self-rated visual imagery were found to be predictive of BD, alongside a measure of inhibition derived from the Stroop task. In contrast, spatial memory and global precedence were not related to BD. Results are interpreted with reference to the influential multi-component model of working memory
    • …
    corecore