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Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and
overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to
have some knowledge of the outcome a priori in order to determine how many clusters to look for. Additionally, iterative algorithms
choose the optimal number of clusters based on one of several performance measures. In this study, the authors compare the
performance of three algorithms (fuzzy c-means, Gustafson-Kessel, and an iterative version of Gustafson-Kessel) when clustering
a traditional data set as well as real-world geophysics data that were collected from an archaeological site in Wyoming. Areas of
interest in the were identified using a crisp cutoff value as well as a fuzzy a-cut to determine which provided better elimination of
noise and non-relevant points. Results indicate that the a-cut method eliminates more noise than the crisp cutoff values and that
the iterative version of the fuzzy clustering algorithm is able to select an optimum number of subclusters within a point set (in
both the traditional and real-world data), leading to proper indication of regions of interest for further expert analysis

Copyright © 2009 David J. Miller et al. This is an open access article distributed under the Creative Commons Attribution License,
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1. Introduction

Archaeologists have employed various techniques of geo-
physical survey for over a half century with much of
this pioneering work completed in Europe, particularly on
Roman sites in England (see [1, 2] for review of this
work). Today geophysical survey is widely used in European
archaeology and is gaining popularity in North America
[3]. The current work at the Goetz site in northwestern
Wyoming (Figure 1) utilizes a magnetic gradiometer survey
in order to detect subsurface features or areas of past
human activity. Gradiometer survey tools like those shown in
Figure 2 operate by directing a magnetic field into the matrix
(soil) and reading the strength of the magnetic field that is
returned from the matrix. An archaeological feature may be
detected by the instrument if it has contrast to the matrix
in which it resides. Such features may include hearths, house

pits, storage pits, and other ground-disturbing activities left
by inhabitants of the region.

An ideal setting would be one in which the matrix has
little or no magnetic signature (and is uniform), and the
archaeological feature has a significant magnetic signature.
This would create high contrast between matrix and features
and allow for high visibility of the feature, allowing an
area of interest to emerge in the data analysis. However,
this is rarely the case, and it is the challenge of geophysics
researchers to recognize and sort out the features or areas
of interest from the noise present in the matrix. Noise is
also contributed by the presence of foreign materials (plants,
rocks, refuse, etc.) in the scan region or irregularities in
the terrain of the scan region (Figure3). It is for these
reasons that the investigators of this current work employed
fuzzy clustering techniques to the collected gradiometer
data.
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FIGURE 1: Map of the Goetz site near Jackson Hole, WY. Square areas A—F represent scanned regions discussed throughout this paper.

FiIGUrRe 2: FM36 Magnetic Gradiometer by Geoscan Research
(Bradford, West Yorkshire, UK). This handheld device is used to
scan for subsurface archaeological features.

By partitioning a collection of data points into smaller
subgroups, one is performing a clustering technique. Hard
clustering is when each data point is uniquely assigned to
one and only one cluster, while fuzzy clustering assigns a
membership value to each point in each possible cluster
and assigns the point to the cluster in which it has the
highest “membership.” Fuzzy clustering can be thought of
as a precursor to hard clustering, since the end result is

often partitioning of the data points into sets for control or
categorization purposes. The problem with hard clustering is
that it is assumed that the boundaries between groups are
well defined, while this is not the case with many, in fact
most, natural systems.

Fuzzy clustering is based on the notion of fuzzy sets
as proposed by Zadeh in 1965 [4], which uses analogs
to traditional set theory to combine and compare points
in various groups with imprecision in the boundaries
between the sets. This inherent imprecision makes fuzzy
clustering ideal for emerging fields such as clustering and
classification of geophysics data, in which the boundaries
between locations of interest and the surrounding material
are imprecise at best.

Two traditional methods of fuzzy clustering are the
so-called fuzzy c-means (FCM) and Gustafson-Kessel (G-
K) algorithms. FCM was originally proposed by Dunn [7]
and was further refined by Bezdek [8], while G-K was
developed in 1978 by Gustafson and Kessel [9]. The two
methods are similar in that they use a distance measure to
compute the cluster partitions and assign points to clusters;
however, while FCM uses a norm-inducing identity matrix to
compute the distances, G-K uses a cluster covariance matrix
in the distance calculation, making it a subclass of FCM
[5].

A third clustering method, similar to work done by
Gath and Geva [6], is based on G-K, but does not
assume any prior knowledge about the number or nature
of subclusters present, which is not always available when
analyzing real-world data. Rather than guessing at a number
of clusters, the user defines a maximum number of clusters
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F1GURE 3: Using the handheld gradiometer in the field introduces a wide range of nonlinearity. Flora, terrain, and user inconsistencies all

add to uncertainty inherent in the measurements.

(K) and the algorithm iteratively progresses from 2 to K,
and outputs the cluster centers and partition matrix of
the cluster with the best performance based on one of a
number of validation methods (discussed more in the next
section).

The purpose of this investigation was to compare these
three similar, yet unique clustering algorithms, first on a
standard data set, and then on geophysics data for detection
of archaeological features. Specifically, the standard data set
is the well-known Iris data initially gathered by Anderson in
1935 [10] and published by Fisher the following year [11].
This data set is used as a benchmark for comparison.

There are two reasons for this analysis. First, since
custom codes for the standard and iterative G-K algorithms
were written or modified in MATLAB (The MathWorks,
Inc., Natick, MA) for this study, some measurement of
their effectiveness was needed (the MATLAB function fcm
was used as a baseline so validation of that code was
deemed unnecessary), and the Iris data was used as a
“debugging,” validation and benchmarking tool. The second
reason for validation was that in 1999 Bezdek published a
correspondence indicating that there were multiple distinctly
different versions of the Iris data that have been used as
data sets in various published reports [12]. For this study,
the original Iris data from [11] were carefully transcribed
from the original work and independently checked for
errors by a number of individuals to ensure that the
correct data were, in fact, being used. This is intended
to provide a uniform comparison of the three clustering
methods.

The remainder of this paper is organized as follows.
Section 2 will cover the three different clustering algorithms
and experimental setup, while the validation using the Iris
data is presented in Section 3. Section 4 shows the results of
applying the clustering algorithms to real-world geophysics
data to determine the presence and location of archaeological
“anomalies.” Section 5 will provide a summary and state-
ment of conclusions as well as highlight future directions for
this research.

2. Clustering Methods

Each of the three algorithms presented in the following
section follow a similar structure: (1) select initial cluster
centers, (2) calculate the distances between all points and all
cluster centers, (3) update the partition matrix until some
termination threshold is met. The differences lie in the way
the algorithms perform steps (1) and (2), where they each
derive their strengths. These differences will be discussed
below. FCM and G-K have been extensively studied in the
literature, so only a brief review of these two methods is
presented below.

2.1. Fuzzy c-Means. The FCM algorithm is shown in Figure 4
as adapted from [5]. The purpose of the algorithm is to
satisfy (1). Cluster centers (prototypes) are calculated during
each iteration as the mean of the points in each sub-cluster,
and the initial partition matrix, U, is randomly assigned at
the beginning of the algorithm. The algorithm repeats until
the difference between partition matrices U and U!~V
(the Ith and I — 1st iteration, resp.) is less than e. As the
weighting exponent, m — oo, the fuzziness of the function
increases, causing feature vectors with low membership, y, to
contribute less to the overall weighting of the partition [13];
m is typically set equal to 2, as was the case in this study.
If the error never reached below & (107> in this study), the
maximum number of iterations was set to 100 as a second
termination criterion

N ¢
Minimize J,,(U,v) = ZZ(/"ik)mDizkA' (1)

k=1i=1

2.2. Gustafson-Kessel Algorithms. When comparing Figures
4 and 5, representing the FCM and Gustafson-Kessel algo-
rithms, respectively [5], one should immediately notice
many similarities. The parameters m, ¢, 4, and J are all the
same between the two algorithms. The major difference is
in the calculation of the distances between the points in
the data set and the cluster centers. Whereas in FCM the
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tolerance ¢ > 0 and the norm-inducing matrix A.
Repeat for [ = 1,2,...
Step 1: Compute the cluster prototypes (means):

Step 2: Compute the distances:

Step 3: Update the partition matrix:
if Djgy >0forl =i=c¢,1=k=N,

(O]

Given the data set Z, choose the number of clusters 1 < ¢ < N, the weighting exponent m > 1, the termination

0] ZQIZI (A”lx(llfil))mzk
Vi = N (1-1) m >
21 (/"ik )

i

Dy = (2 - vf”)TA (i - v}

l<i<c

), 1<i<¢ l<k<N.

1

Hik =

otherwise

until |UY — U <.

i (DikA/DjkA

‘ug,l() = 0if Djxa > 0, and yf,lc) =€ [0,1] with Z‘uf,? =1

)2/(71171)

i=1

FIGURE 4: Fuzzy c-means algorithm from [5].

distance measure uses a norm-inducing (identity) matrix, G-
K uses a parameter based on the covariance matrix of each
cluster, allowing the distance norm to adapt to the shape of
the subclusters to best suit the data [5]. According to [9],
the term M; (equivalent to p; det(F,)Y "F;! from Figure 5)
is symmetric and positive-definite, allowing the algorithm
to adjust to conditions when feature dimensions are scaled
differently; thus the algorithm can adjust to variations in the
shape of each sub-cluster.

2.3. Iterative Gustafson-Kessel. The Unsupervised Fuzzy
Partition-Optimal Number of Classes (UFP-ONC) algo-
rithm by Gath and Geva [6] is an attempt to further optimize
G-K clustering (and by extension FCM). In both G-K and
FCM, one must know something about the inherent divi-
sions among the data in order to provide the algorithm with
the number of subclusters present in the data. To augment
a traditional clustering algorithm, Gath and Geva added
an iterative loop to the algorithm that, rather than a fixed
number of subclusters, uses a maximum number of clusters
and one of several performance measures to determine the
optimal number of subclusters within the data.

The algorithm (Figure 6) has many similarities to FCM
and G-K: centroids (v) are calculated as the mean of points
within a cluster, points are assigned to a cluster using
a partition matrix, U, termination is determined using a
criterion, ¢, and a distance measure is employed that makes
use of the covariance of the cluster members. Rather than

the traditional Euclidian distance measure, Gath and Geva
employed the so-called “exponential” distance measure, d?,
which is intended to accommodate hyperellipsoidal clusters
with variable densities. However, rather than automatically
subdividing the data into K subclusters, UFP-ONC starts at
k = 2 clusters (k = 1 can be ignored since it represents
a sub-cluster consisting of the entire universe of discourse)
and proceeds up to some user-defined maximum, K < N.
Termination of the algorithm for a given maximum number
of clusters occurs when the maximum difference between
U’ and U'"! is less than ¢ or when a maximum number of
iterations is reached.

While the exponential distance measure is definitely
worthy of further study and could provide better separation
between the nonspherical, variable density anomaly clusters
present in geophysics data, the algorithm was not used
here in favor of an iterative version of the standard G-K
algorithm. The first reason was that, despite its possible
benefits, using the exponential distance measure would
introduce another level of complexity and possible source
of error to this current study (since comparative analysis of
the three methods is more meaningful if a similar distance
measure is used). Secondly, the functionality of the UFP-
ONC algorithm is very similar to G-K (as seen in Figures
5 and 6), so very little extra information would be gained
by using the exponential distance measure. Finally, since the
partition and covariance matrices naturally produced by G-K
can be used to calculate the various performance measures as
used in [6] there is little reason not to simply add an iterative
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Given the data set Z, choose the number of clusters 1 < ¢ < N, the weighting exponent m > 1, the termination
tolerance ¢ > 0.
Repeat for [/ = 1,2,...
Step 1: Compute the cluster prototypes (means):
N (-n\"
o) Zkzl (."‘ik ) Zy X
v; :7]\’ N l<i<ec
pI (/"ik )
Step 2: Compute the cluster covariance matrices:
N -1\ ) T
/S T
i= —D\ ™M > =1=
Zf:l (Hzgk 1))
Step 3: Compute the distances:
T
D3y, = (2 =) [pidet(B)"F'] (ze-v"), 1<is<c¢l<ksN
Step 4: Update the partition matrix:
ifDikA,‘ >0f0r1:i:C,1:k:N,
P 1
W= -
D % (Dika,/Dia) """
otherwise
1y = 0if Dya, >0, and p € [0,1] with zyﬁﬁ =1
i=1
until |UY — U | <&
F1GURE 5: Gustafson-Kessel algorithm from [5].
step to G-K. For this study, m = 2 and ¢ = 107> for both the > K Z?;l Hij (@)
iterative and noniterative versions of G-K. Pp = Fry ’

During each iteration, one of three different performance
measures is calculated; the best fuzzy partition matrix is the
one which optimizes the functions shown in (2)-(4). All
three measures take into account sub-cluster hypervolume,
and two of them accommodate point density [6]. Equation
(2) is the “fuzzy hypervolume,” (3) is the “average partition
density,” and (4) is the “partition density,” where F; is the
covariance matrix. Optimal volumetric measures are minima
while density measures are maxima. Gath and Geva showed
that the FHV criterion exhibited a clear minimum for most
cases they studied; however, as the clusters began to overlap
more and more or as the compactness of clusters began to
vary, the density criteria would provide a better measure
of performance. Such a result was expected when analyzing
Fisher’s Iris data

K
Fuv = Z[det(Fi)]m, (2)
i=1
BTSN
Dea = Ei; [det(F)]Y?’ ®)

2.4. Experimental Setup. In addition to the settings for the
three algorithms and the different algorithms themselves,
as discussed above, there were several other parameters
that were varied throughout the study. The first of these
parameters was the method of segregating points of interest
from background and noise (induced from irregularities
in the soil, terrain effects and vegetation; see Figure 3) in
the scans. From an in situ scan, geophysical magnetometer
data ranges from approximately —180 to 2000nT, with
features of interest falling somewhere between —3 and —5nT,
with some variability in the ranges of interesting features.
Due to this variation, a fuzzy segregation method was
used to determine which data points were of interest and
was compared to a crisp cutoff at —3 and —5nT. The
membership function used as a cutoff is shown in Figure 7.
A membership value of 0.98 (similar to an a- or A-cut
[14]) was used to identify the anomaly points for this
study.
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1<i<N,1=<j<K

The descriptive parameters used were [0.75,3, —4]. Various
combinations were tried to find the optimum combination.
These changes are detailed in the appendix.

The second parameter that was changed was the maxi-
mum number of clusters to be considered. While G-K and
FCM each use the full number of clusters indicated by
the user, the iterative G-K algorithm can use any number
of clusters, from 2 to K, as possible best partitions. Each
magnetometer data file was processed for three clusters and
for a maximum of 10 clusters, since these were the values
used for the Iris validation in the following section. G-K
and FCM results are compared to Iterative G-K results to see
if certain clusters are always represented, regardless of how
many subclusters are present.

Four data files were obtained from a geophysics study of
the Goetz site in northwestern Wyoming using a Fluxgate

6
Given the data set X, choose the number of clusters 1 < K < N, the weighting exponent m > 1, the termination
tolerance ¢ > 0.
Repeatfork = 1,2,...,K
Step 1: Choose primary centroids V;:
Step 2: Compute membership of all feature vectors in each cluster:
vd? (X, V;)
.uij zh(lIX]) = ﬁ)
Sk V2 (X, V)
T
112 X;-Vi) F'(X;-V;
: ety | (- Vi) B - V)
d: (Xj,Vj) = P exp 2
(2h (1)
Pi=—>h(ilX;
NZ
N . T
£ ijl h (Z | Xj) (X] - V,) (X] - V,)
Stk (i1%))
While I’I’laX,J“[J,J — ﬁljl] > €
Step 3: Compute new centroids, V;, and update memberships, 4;; to ﬁ,-]-.
N m
g _ Zin (1) X
= TN 7 T
21 (P‘*‘i )
F1Gure 6: Unsupervised optimal fuzzy clustering algorithm from [6].
1
0.8
& 0.6
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g
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0 1
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Input value

FIGURE 7: Fuzzy membership function used to determine points of
interest from raw geophysics data. MATLAB function: gbellmf(x,
[0.75,3, —4]).

The parameters used for the gbellmf MATLAB function
include the dataset and a vector describing the position
and size of the membership function being described.

FM/36 magnetic gradiometer, a standard geologic scanning
tool (Figure 2). Scans from Figures 10(a)-10(c) were of 20
X 20 meter grids A, B, and C indicated in Figure 1 while
the scans represented in Figure 10(d) were from 20 X 20 m
grids D, E, and E At each site, readings were taken at
0.125 m intervals with a transverse interval of 0.25 m. After
the storage capacity of the Fluxgate FM/36 was met, the data
were downloaded to a laptop computer and converted to
comma-delimited files using Geoplot 3.00 software (Geoscan
Research, Bradford, West Yorkshire, UK). These raw data files
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were then input to the MATLAB program containing the
algorithms described above.

3. Fisher’s Iris Data

In 1999, Bezdek et al. published a correspondence called
“Will the Real Iris Data Please Stand Up?” [12]. This
correspondence pointed to a series of minor errors in
reported values of data collected by Anderson in 1935 [10]
and reported first by Fisher in 1936 [11]. These data points
have been used extensively throughout the literature to
provide a baseline for clustering algorithms, but if errors
were present in the data, the results might not be as strong
as they would otherwise have been. In an effort to validate
the current work and attempt to eliminate the confusion in
the community about which data set is “authentic,” the Iris
data were copied directly from Fisher’s original work and
then compared to that reported by Bezdek, both digitally and
by hand. After a number of independent verifications, it was
found that the results agree, so there is high probability that
the data originally reported by Fisher in 1936 are being used
here. The data are reported here as Table 1, for the sake of
completeness and disclosure.

With the data accuracy question resolved, the validation
of the algorithms was the next task. The MATLAB function,
fcm, was used as a benchmark for the other two algorithms.
Since prior information was known about the data set, it
was assumed that there were three clusters for both G-K and
FCM, since each uses a fixed number of clusters. Maxima
of 3 and 10 subclusters were assumed for the iterative G-
K algorithm to test for accuracy of clustering and efficacy
of performance measures. The results are shown in Table 2.
To get an idea of the magnitude of errors to be expected:
Bezdek reported that for unsupervised algorithms, as these
are, one can expect anywhere from 10 to 15 errors in the
cluster assignments of the Iris data [15], which were used
as a basis for current comparisons. It can be seen that, with
the single exception of the iterative G-K algorithm with FHV
performance measure and maximum of 10 subclusters, all of
the algorithms found partitions that group points optimally,
within the range of errors reported by Bezdek.

In all but one case from Table 2 (Iterative G-K, FHYV,
max = 10), the algorithms found all three clusters in almost
identical locations (see Tables 3 and 4), which are similar
to the results reported in [11]. The one difference, as one
should notice when considering the last column of Table 2, is
that the FHV performance measure resulted in 9 subclusters
when the maximum number of clusters was set to 10. A
summary of the performance of this measure with respect
to increasing maximum number of clusters to be considered
is shown in Table 4. The nine cluster centers obtained using
Iterative G-K, FHV, max = 10 are shown in Table 5.

Noticing that there is a pattern to the resultant cluster
centers shown in Table 5, this begs the question, “What
would happen if the results were reclustered?” Keeping this
in mind, the 9 cluster centers from Table 5 were run through
the same clustering algorithm that produced them (Iter. G-
K, FHV, max = 10) to produce the resultant cluster centers

shown in the last four columns of Table 3 (there is no way
to compare the results of 9 subclusters with the correct
values obtained with 3 subclusters). Though these reclustered
results do not perform as well as the rest of the algorithms
represented in Table 2, the outcome is improved since there
are three subclusters with similar centers to those shown
throughout Table 3. These results, as well as the poor overall
FHYV performance measure, are exactly as predicted by Gath
and Geva [6] for overlapping clusters as discussed in the
previous section. Given these results and the similarity to
other outcomes reported in the literature, the authors believe
that the algorithms perform satisfactorily and are ready for
use in clustering real-world data.

4. Clustering Geophysics Data

Data gathered at the Goetz site in northwestern Wyoming
were gathered during the 2002 and 2003 summer field
seasons using the Fluxgate FM/36 magnetic gradiometer. A
graphical representation of the data is shown in Figure 8
along with an expert’s opinion about what regions represent
areas of interest that the fuzzy system should identify. Black
areas of the figures represent unscanned areas or foreign
objects (nonartifact metal) in the field of view of the scanner.

4.1. Fuzzy versus Crisp Cutoff. When the various clustering
algorithms were applied to actual geophysics data, there was
a wide range of different results. The first difference had
to do with the cutoff method used: fuzzy or crisp. Figure 9
shows the results of processing the data files using the crisp
cutoff values —5 to —3, and Figure 10 shows the results
of processing the data files with a fuzzy cutoff using the
membership function shown in Figure 7 at « = 0.98. Table 6
quantitatively shows the number of clusters present in each
of the different variations of the parameters. Though the data
in Table 6 appear to show little difference between fuzzy and
crisp cutoff values, the major dissimilarity is in the number
of data points remaining after cutoff (shown in Table 7).
Though it might be possible to further tune the crisp
cutoff values to further limit the number of “noise” points in
the data set, the data in Table 7 illustrate that increasing the
a-cut does not add a significant improvement to the resulting
data set. Additionally, the authors feel that the inherent
ability of fuzzy membership functions to handle nonlinearity
makes it an ideal choice for an investigation of this type.
The archaeological experts recommended the cutoff values of
“about” [—5, —3], which should immediately indicate “fuzzy
logic” to anyone familiar with the technique. Also, since the
data is being collected in a noisy environment, operator error
is unavoidable, and there will always be the possibility of
outliers, a fuzzy membership cutoff methodology is ideal.
Moreover, future versions of this system could incorporate
more fuzzy membership functions to further eliminate
outliers. For example, a fuzzy inference system could be
set up to accommodate the position of possible anomalies
within the area of interest, in essence “preclustering” data
points based on magnetometer reading and location (similar
to a nearest-neighbor algorithm). Attempting this kind of
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TaBLE 1: Fisher’s Iris data [11] that were validated and compared to that reported by Bezdek et al. [12].

Iris Sestosa Iris Versicolor Iris Virginica
Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal
lengh width length width lengh width length width lengh width length width
5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5
4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9
4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3.0 5.9 2.1
4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3 6.3 2.9 5.6 1.8
5.0 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3.0 5.8 2.2
5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3.0 6.6 2.1
4.6 34 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7
5.0 3.4 1.5 0.2 4.9 2.4 3.3 1.0 7.3 2.9 6.3 1.8
4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8
4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5
5.4 3.7 1.5 0.2 5.0 2.0 3.5 1.0 6.5 3.2 5.1 2.0
4.8 3.4 1.6 0.2 5.9 3.0 4.2 1.5 6.4 2.7 5.3 1.9
4.8 3.0 1.4 0.1 6.0 2.2 4.0 1.0 6.8 3.0 5.5 2.1
4.3 3.0 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5.0 2.0
5.8 4.0 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 24
5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3
5.4 3.9 1.3 0.4 5.6 3.0 4.5 1.5 6.5 3.0 5.5 1.8
5.1 3.5 1.4 0.3 5.8 2.7 4.1 1.0 7.7 3.8 6.7 2.2
5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3
5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6.0 2.2 5.0 1.5
5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3
5.1 3.7 1.5 0.4 6.1 2.8 4.0 1.3 5.6 2.8 4.9 2.0
4.6 3.6 1.0 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2.0
5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8
4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1
5.0 3.0 1.6 0.2 6.6 3.0 4.4 1.4 7.2 3.2 6.0 1.8
5.0 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8
5.2 3.5 1.5 0.2 6.7 3.0 5.0 1.7 6.1 3.0 4.9 1.8
5.2 3.4 1.4 0.2 6.0 2.9 4.5 1.5 6.4 2.8 5.6 2.1
4.7 3.2 1.6 0.2 5.7 2.6 3.5 1.0 7.2 3.0 5.8 1.6
4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9
5.4 3.4 1.5 0.4 5.5 2.4 3.7 1.0 7.9 3.8 6.4 2.0
5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2
5.5 4.2 1.4 0.2 6.0 2.7 5.1 1.6 6.3 2.8 5.1 1.5
4.9 3.1 1.5 0.2 5.4 3.0 4.5 1.5 6.1 2.6 5.6 1.4
5.0 3.2 1.2 0.2 6.0 3.4 4.5 1.6 7.7 3.0 6.1 2.3
5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4
4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8
4.4 3.0 1.3 0.2 5.6 3.0 4.1 1.3 6.0 3.0 4.8 1.8
5.1 3.4 1.5 0.2 5.5 2.5 4.0 1.3 6.9 3.1 5.4 2.1
5.0 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4
4.5 2.3 1.3 0.3 6.1 3.0 4.6 1.4 6.9 3.1 5.1 2.3
4.4 3.2 1.3 0.2 5.8 2.6 4.0 1.2 5.8 2.7 5.1 1.9
5.0 3.5 1.6 0.6 5.0 2.3 3.3 1.0 6.8 3.2 5.9 2.3
5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5
4.8 3.0 1.4 0.3 5.7 3.0 4.2 1.2 6.7 3.0 5.2 2.3
5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5.0 1.9
4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3.0 5.2 2.0
5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 6.2 3.4 5.4 2.3

5.0 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3.0 5.1 1.8




Applied Computational Intelligence and Soft Computing

TaBLE 2: Number of resultant Iris clusters and classification errors from each of the three algorithms using two different maxima for the
iterative algorithm. *Number of errors from clustering of 9 resultant subclusters using FHV, max = 3.

Iter. G-K, Iter. G-K, Iter. G-K, Tter. G-K, Iter. G-K. PD Iter. G-K,
Algo FCM (3 clust.)  G-K (3 clust.) DPA PD FHV DPA (m.ax B ’1 0) FHV

(max=3) (max=3) (max=3) (max= 10) B (max = 10)*
#Clusters 3 3 3 3 3 9
Errors 16 14 14 14 14 24

TaBLE 3: Iris cluster centers reported by various algorithms and settings. * Cluster centers obtained from clustering of 9 resultant subclusters
using FHV, max = 3.

Algo FCM (3 clust.) G-K (3 clust.)
5.004 3.4141 1.4828 0.25354 5.0147  3.4383 1.4663  0.24451
Center 5.8888 2.761 4.3637 1.3972 6.1385  2.8024 4.534 1.4108
6.7748  3.0523  5.6466 2.0535 6.3928 29764  5.2897 2.0084
Algo Iter. G-K, DPA (max = 3) Iter. G-K, PD (max = 3) Iter. G-K, FHV (max = 3)
5.0147  3.4383 1.4663  0.24451 5.0147  3.4383 1.4663  0.24451 5.0147  3.4383 1.4663  0.24451
Center 6.1385  2.8024 4.534 1.4108 6.1385  2.8024 4.534 1.4108 6.1385  2.8024 4.534 1.4108
6.3928 29764 52897  2.0084  6.3928 2.9764 52897  2.0084  6.3928 2.9764 5.2897  2.0084
Algo Iter. G-K, DPA (max = 10) Iter. G-K, PD (max = 10) Iter. G-K, FHV (max = 10)*
5.0147  3.4383 1.4663  0.24451 5.0147  3.4383 1.4663  0.24451 5.0247  3.3975 1.5854  0.32499
Center 6.1385 2.8024  4.534 1.4108 6.1385 2.8024  4.534 1.4108 57601  2.6904  4.2685 1.2956
6.3928 29764 52897  2.0084  6.3928 29764 52897  2.0084  6.5041 2.9663 5.1772 1.8804

modification with the crisp cutoff values would be much
more complex and difficult to tune for novel situations. This
will be discussed further in Section 5.

Finally, rather than having to individually tune the upper
and lower bounds of the crisp cutoff range, the users can
simply adjust the a-cut value, which lends itself well to a GUI
slider or other UI objects that are readily available in most
programming languages, including MATLAB. A slider would
allow users in the field an intuitive means to adjust the search
criteria “on the fly,” to achieve the best outcome. Overall, the
authors believe that for a system like this, fuzzy cutoff values
are the best choice.

4.2. Maximum Clusters. As is shown in Table 6, both FCM
and G-K use the maximum number of clusters possible,
which is in accordance with the algorithms. Since the iterative
G-K algorithm was designed specifically to optimize the
number of clusters, it should come as no surprise to see that
the number of resultant clusters is varied across the three
different performance measures and maximum number of
clusters. Quantitatively, this result is shown in Table 6, but
the results were qualitatively different, as well. Due to space
constraints, not all of the resulting plots can be shown here,
but Figure 11 shows the extremes, both good and bad. In
general, the results fall into one of the following categories:

(I) round or near-round “clouds” of points,
(IT) some subclustering of areas of interest.
Ideally, points belonging to a well-defined area of interest

would fall into class II, while random clouds of points that
were “forced” into a sub-cluster would fall into class I.

Most of the traditional G-K and FCM results fell into
class 1, since they were forced to consider the maximum
number of subclusters available (see Figure 11(e)). Some
datasets, however, like Figure 11(b), exhibit a clear lower lin-
ear feature as shown in Figures 8(a) and 8(b). Unfortunately,
the other two linear features and the round features in this
data set do not show up as clearly. This is most likely due
to the close similarity between the magnetometer readings
of the surrounding soil and the features. Similar results can
be seen when comparing Figures 11(d), 8(c), and 8(d). One
can see the beginnings of the linear features running from the
bottom-left to the top center and the round feature in the top
right-hand corner of the grid.

4.3. Fuzzy Clustering and Initialization. In addition to the
type of algorithm used to cluster the data, there are
parameters that can be modified to affect the output of the
analysis: the fuzziness exponent m, and the initialization
of the cluster centers. The parameter “m” (sometimes “q”)
controls the fuzziness of the resulting clusters and can be
used to cluster datasets with overlapping point sets [6] and
in most cases, is set to 2.0. Using the experimental datasets
as a trial, the fuzziness exponent was changed for each of
the different clustering algorithms, ranging from 1.0 to 5.0.
For the data sets tested, there was very little difference in
the resulting output. Table 8 shows the minor differences in
the output across the various values for “m” for the FCM
algorithm. The other algorithms showed a similar pattern;
therefore, it was deemed that for these data, the fuzziness
parameter did not have a large effect, so was used at its default
value, 2.0.
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TaBLE 4: Number of resultant clusters using Iterative G-K algorithm, fuzzy hypervolume performance measure and the maximum number

of clusters shown in row 1.

Max 3 4
Actual 3

10

(c)

(d)

FIGURE 8: (a) Graphical representation of data gathered at Goetz grids D, E, and E. (b) Expert opinion on archaeological features of interest
contained in magnetometer data from part (a). (c) Graphical representation of data gathered at Goetz, grid C. (d) Expert opinion on
archaeological features of interest contained in magnetometer data from part (c). Red, blue, and green pixels represent readings of metallic
objects in the scan field; red lines and circled areas represent features of interest.

TaBLe 5: Cluster centers using Iterative G-K algorithm, fuzzy
hypervolume performance measure and up to 10 clusters.

6.2262 2.9524 5.399 2.087

6.5788 2.9829 4.5774 1.4299
5.1406 3.3637 1.8641 0.53001
4.8242 3.3835 1.4217 0.24568
7.0132 2.9938 5.7007 2.0942
5.9606 2.8838 4.5994 1.3934
6.2008 2.9365 5.0255 1.9051

5.1093 3.4454 1.4704 0.19927
5.5596 2.497 3.9375 1.1978

The other parameter that can have an effect on the
resultant clusters is the initial condition of each cluster
center; however, with each of the algorithms in this study,
the initial partition matrix is randomly initiated, eliminating
this as a possible factor.

4.4. Expert Opinion. When consulting an expert about the
results shown in these suboptimal clustering outcomes,
the general feeling was positive. Despite the lack of any
clear subclusters (Figures 10(a) and 10(b)), the software
was deemed to be providing results that were no worse
than traditional geophysics programs. Since the output of
traditional programs shows every data point in grayscale, the
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TaBLE 6: Number of resultant clusters using three algorithms and three performance measures with respect to maximum number of clusters
and fuzzy or crisp cutoff. Resulting 4 tuples are for different data files: (A, B, C, D).

Algorithm
Max.
Clusters

FCM 3 FCM 10 G-K3 G-K 10

Iter. G-K,
DPA 3

Iter. G-K,
DPA 10

Iter. G-K,
PD3

Iter. G-K,
PD 10

Iter. G-K,
FHV 3

Iter. G-K,
FHV 10

Fuzzy 3,3,3,3

3,3,3,3

10,10,10,10
10,10,10,10

3,3,3,3
3,3,3,3

10,10,10,10

Crisp 10,10,10,10

2,2,3,3
2,2,3,3

2,2,8,3
2,2,9,3

2,2,3,3
2,2,3,3

2,2,8,3
2,2,9,3

3,2,2,3
2,2,2,3

3,8,10,10
2,9,10,10

20 22 24 26 28 30 32 34 36 38
Metal = red

20 22 24 26 28 30 32 34 36 38
Metal = red

No metal found

(c)

10

12

14

16

18

20 22 24 26 28 30 32 34 36 38

No metal found Metal = red

(®)

40 45 50 55 60 65 70 75
Metal = red

(d)

FIGURE 9: Data sets resulting from crisp cutoff values [—5, —3]. Subplots (a)—(d) represent different data files from different areas within the
survey site (see Figure 1); (a) represents region A, (b) represents region B, (c) represents region C, and (d) represents regions D, E, and F
(rotated 90° counterclockwise). Red pixels represent metallic objects and green pixels represent possible areas of interest.

addition of color to the resulting plot helps the investigator
better visualize the regions that may fall within the range
of interest. When no features of interest are present, as in
Figures 10(a) and 10(b), the program shows the lack of
features in a very clear manner; when features are present
as in Figure 11, the clustering algorithm has been shown

to clearly identify regions of interest (Figures 11(b) and
11(d)). The main problem with the algorithm is that with the
settings as they are, there is no way to extract all the features
without overestimating the number of points in the data set;
however, this problem will be addressed in future versions of
the software.



12

Applied Computational Intelligence and Soft Computing

20 22 24 26 28 30 32 34 36 38
Metal = red

20 22 24 26 28 30 32 34 36 38

No metal found Metal = red

20 22 24 26 28 30 32 34 36 38

No metal found Metal = red

(c)

40 45 50 55 60 65 70 75
Metal = red

(d)

FIGUure 10: Data sets resulting from fuzzy cutoff values using the MATLAB function gbellmf(x, [0.75,3, —4]). As in Figure 8, subplots
represent different scan areas enumerated in Figure 1. For a more detailed description of gbellmf, see the appendix.

TaBLE 7: Size of data sets after cutoffs using two fuzzy thresholds
(a-cuts) and crisp cutoff values.

Dataset A B C D

Fuzzy (a = 0.98) 971 1535 157 442
Fuzzy (a = 0.85) 971 1535 157 442
Crisp 1593 2712 342 820
Factor 1.64 1.77 2.18 1.86

5. Conclusions and Future Work

Though these algorithms may be utilized in a number of
different situations, the software used in this study was
designed specifically for this application, so would only be
of limited utility in other situations. As with any scientific

endeavor, there are a number of different methods that could
be used to segregate the data in this study. The authors
chose the algorithms presented due to their proven track
record and wide acceptance; however, there are alternatives
that could be considered. For instance, works by Pal et al.
[16] and Yang and Wu [17] expand on the traditional fuzzy
c-means algorithm by adding different clustering methods,
membership functions, and cluster validity indices. The
complexity of these algorithms precluded their inclusion in
the current work, but in order to expand the utility of this
program to other problem types, their inclusion in future
versions may be warranted.

Initially, it was observed that the clustering methods
presented here work well on a data set with overlapping
subclusters, namely, Fisher’s Iris data. When running a
noniterative measure like FCM or G-K with exactly the
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Algorithm: G-K(iter) (max clusters = 10)
Validation method: fuzzy hypervolume

(b)

20 22 24 26 28 30 32 34 36 38
Metal = red

No metal found

Algorithm: G-K (iter) (max clusters = 3, fuzzy)

Validation method: fuzzy hypervolume
()

20 22 24 26 28 30 32 34 36 38

No metal found

Algorithm: FCM (fuzzy)

20 22 24 26 28 30 32 34 36 38
No metal found Metal = red

Algorithm: Gustafson-Kessel (fuzzy)

(d)

Metal = red

FIGURE 11: Representative results of various clustering algorithm runs: (a) Poor result: Region “D,” iterative G-K, average partition density
performance measure, maximum clusters = 3; (b) Good result: Region “D,” iterative G-K, fuzzy hypervolume performance measure,
maximum clusters = 10; (c) Poor result: Region “C,” iterative G-K, fuzzy hypervolume performance measure, maximum clusters = 3; (d)
Good result: Region “C,” G-K, max clusters = 10; (e) Poor result: Region “A,” FCM, max clusters = 10.
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0
5
10
15
20
25
30
35
4 45 50 55 60 65 70 75 4 45 50 55 60 65 70 75
Metal = red Metal = red
(a) (b)
Metal = red
FI1GURE 12: Representative results of various membership function values: (a) A = 0.75, B = 3, C = —4. These values were used in the study
because they provide a good balance of eliminating outliers and high cluster compactness; (b) A = 0.25, B = 1, C = —6. These values were
not used because of low, noncompact clusters (lowering individual A, B, or C values gave similar results); (¢) A = 1.25,B = 5,C = —2.

These values were not used because too many points remained (raising individual A, B, or C values gave similar results).

right number of subclusters, it was shown that the clusters
approach what has been traditionally accepted as the appro-
priate centers and partitions. This was validated by the use of
the original data from Fisher’s work.

Secondly, it was found that the results of an iterative
algorithm with an increasing number of subclusters agree
with the results presented in [6]; namely, that as the overlap
between clusters increases, the fuzzy hypervolume measure
tends to provide suboptimal results when compared to
either of the density-based performance measures. This was
shown in Table 2. Because of this fact, the results shown in
Figure 11(b) should be taken with some reservation, since
they might reflect some of this poor performance; however,
the features of interest in geophysics data are often well

separated and do not exhibit the overlap present in the Iris
data, so the poor performance of the fuzzy hypervolume
measure may not be as great a factor. This subject definitely
warrants further study before a stand-alone software package
is taken into the field.

In general, it was shown that fuzzy clustering techniques
are applicable to geophysics data gathered using techniques
such as magnetometry, for purposes of sub-surface feature
identification. The algorithms presented here represent only
a small fraction of the types of clustering available, and
all have room for improvement. Also, it was shown that
fuzzy membership functions are applicable to this field
since the fuzzy membership cutoff method provided fewer
outlier points and fewer overall points than the crisp cutoff
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TasLe 8: Cluster centers (X, Y) for various values of fuzziness parameter: m = 1.1, 2.0, 2.5, 3.0, 5.0.
fem (m = 1.1) fcm (m = 2.0) fcm (m = 2.5) fcm (m = 3.0) fcm (m = 5.0)
12.38, 71.54 12.90, 72.60 13.06, 72.60 13.14,72.34 12.42,71.02
21.74, 45.68 35.64, 53.60 35.52, 54.31 35.35, 54.89 34.76, 55.05
20.13, 57.09 20.32, 57.80 19.75, 57.93 19.48, 57.87 19.15, 57.39
35.09, 53.18 21.09, 45.78 21.02,45.74 20.98, 45.77 20.93, 46.03
11.56, 52.02 12.27,53.24 13.18, 52.85 13.73, 52.60 15.27, 53.38

method for a similar range of values. Finally, a version of
the “controversial” Iris data was presented that has been
independently verified in an effort to eliminate the confusion
between the different versions of this data set in the literature
and unify the benchmark measure for comparing the three
algorithms discussed.

There is still much work to be done before there is a
stand-alone piece of software available to fully classify all
features of interest in magnetometer scans. However, the
authors feel that the current system has promise. The major
reason for this feeling is the result shown in Figure 11(b).
The lowest linear feature was identified without many extra
outliers. The first major downfall, as one can plainly see, is
the overabundance of noise and outlier points in the figure.
This problem can be addressed in one of two different ways:
adjusting the threshold values of the membership function,
or creating additional membership functions comprising a
fuzzy inference system (FIS) to identify which points are of
interest and which are noise based not only on magnetometer
readings, but also on proximity to other points. This FIS
would act as a preemptive clustering or nearest-neighbors
algorithm. This would aid in the elimination of outliers,
possibly decrease computation time, and increase separation
between the various clusters, resulting in an improved result.

The second major downfall is the opposite of the first.
Namely, the features of interest have magnetometer readings
too similar to the surrounding matrix readings. This leads
to otherwise interesting points not being identified, as
was the case with the vertical stripe of lighter points in
Figure 8(c) and 8(d). The exact reason for this light portion
was not known by the expert, but clearly caused the linear
features to be lost to the software. It is believed that one
reason for this problem is that the algorithms used in
this case were unsupervised. The addition of some type of
error back-propagation or running average magnetometer
reading could further improve the results. Using the average
magnetometer reading could help the system automatically
identify what is a true feature of interest and what is not
by selecting points for which the magnetometer value falls
outside a standard deviation of the mean of the scan.
This would be helpful for novel soil types or areas that
have not previously been scanned, since the cutoff values
are somewhat subjective. It might also help eliminate the
problem just discussed relating to unforeseen changes in the
scan characteristics.

In general it was found that, due to the nature of
geophysics data (with round and linear features mixed
together), Gustafson-Kessel is preferable to fuzzy c-means,

since it is designed to handle both sub-cluster types. Also,
using an iterative approach is advisable since most non-
experts will have a hard time deciding what is and is not of
interest on their own, but will use the software to determine
what is worthy of further study; having said that, it is
also advisable to overestimate the maximum number of
clusters possible in order to avoid missing out on features of
interest due to the nature of the algorithms. Finally, since the
areas of interest in geophysics data are often well separated,
using the fuzzy hypervolume performance measure will
not lead to major problems as it would in a dataset with
overlapping subclusters, like the Iris data. The iterative
algorithm with a high maximum number of clusters and
using the fuzzy hypervolume performance measure appeared
to provide superior overall detection of features for the type
of geophysics data being analyzed.

Appendix

The gbellmf{X, [A, B, C]} membership function is based on
an extension to the Cauchy probability distribution function
(see (A.1)). Various combinations of the gbellmf member-
ship function parameters were tested for optimum perfor-
mance. The parameters used for this study were [0.75, 3, —4].
Other combinations were tried but were disregarded because
they either left too many points in consideration or too few
(see Figure 12)

1

1+abs((X — C)/A)*E &.1)

gbellmf(X, [A, B, C]) =
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