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Highlights 

LA-ICP-MS Analysis of Quartzite from the Upper Gunnison Basin, Colorado (Pitblado et al.) 

• 402 samples of quartzite from 48 sources in the Upper Gunnison Basin were systematically 
sampled in the field and analyzed using LA-ICP-MS to determine the degree to which the sources 
can be discriminated from one another. 

• The long-term goal of discriminating the sources is to use the protocols developed to “source” 
quartzite tools and debitage by evaluating their degree of similarity vis-à-vis profiled quartzite 
sources. 

• The study assemblage provides a comprehensive and reliable estimate of the range of 
compositional variability in Upper Gunnison Basin quartzite. 

• Results show spatial and geochronological trends in quartzite elemental composition that can be 
exploited in the future in the Upper Gunnison Basin and perhaps more widely in the world. 

• A different methodological approach must be taken to sourcing culturally modified quartzite than 
is used in traditional and widely applied obsidian sourcing studies.  
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Abstract 

 We report the results of LA-ICP-MS analysis of 402 quartzite samples representing 48 

collection loci in the Upper Gunnison Basin (UGB), Colorado and determine the extent to which 

the sources can be geochemically discriminated from one another using this non-destructive 

technique.  The ability to differentiate among the sources would open the door to provenance 

studies of the quartzite chipped-stone tools and debitage that constitute 95% or more of most of 

the 3,000-plus prehistoric site assemblages documented in the UGB.  Our samples represent 

prehistorically quarried and non-quarried quartzite sources, including outcrop (primary) and 

gravel (secondary) deposits.  The results reveal spatial and chronological trends in quartzite 

elemental composition that can be exploited for provenance determinations of quartzite artifacts 

from UGB sites, albeit using an assemblage-based sourcing strategy that differs from the familiar 

approach of “matching” obsidian artifacts to its statistically likeliest geological source.  We offer 

a preliminary version of a sourcing protocol for UGB quartzite. 

 

Keywords:  Laser ablation; ICP-MS; Quartzite; Gunnison Basin, Colorado; Artifact sourcing; Provenance 

 

1. Introduction 

                                                 
* Corresponding author.  Tel.:  +1 405 325 2490.  Fax:  +1 405 325 7386. 
E-mail addresses: bonnie.pitblado@ou.edu (B.L. Pitblado), molly.cannon@usu.edu (M.B. Cannon), 
hneff@csulb.edu (H. Neff), carol.dehler@usu.edu (C.M. Dehler), steve_nelson@byu.edu (S.T. Nelson)  
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 Archaeologists working around the world use stone-sourcing data to reconstruct how 

humans and tool-making hominids moved across the landscape (e.g., Odell, 2000, 2004).  

Investigators invoke the movement of stone from geologic source to archaeological site as a 

proxy for the movement of the people who handled it.  However, such studies have traditionally 

focused on volcanic and microcrystalline materials to the virtual exclusion of one of the most 

commonly used rock types everywhere:  quartzite.  As we have reported elsewhere (Pitblado et 

al., 2008), the number of researchers who have published attempts to differentiate one source of 

quartzite from another using any method is in the single digits (e.g., Church, 1996; Elbright, 

1987; Julig, Pavlish and Hancock, 1987; Schneider, 2006; Stross, 1988). 

In this paper, we report the results of LA-ICP-MS analysis of 402 samples of quartzite 

from 48 collection loci in the Upper Gunnison Basin (UGB), Colorado (Fig. 1).  A pilot study of 

20 culturally modified quartzite samples (Pitblado et al., 2008) previously suggested that some 

degree of geochemical discrimination among UGB quartzite sources would be possible, a finding 

with important archaeological implications locally and world-wide.  The study reported here 

constitutes the logical next step to the pilot study results:  determining the degree to which 

geochemical variation in UGB quartzite units show sufficient patterning to permit assessments of 

where quartzite used by prehistoric UGB occupants could (and could not) have been procured.    

  

1.1. Archaeology of the Upper Gunnison Basin  

More than 3,000 prehistoric sites have been recorded in the 11,000 km2 UGB, spanning 

the time from Folsom, 10,500 – 10,000 radiocarbon years before present (rcybp), through the 

protohistoric Ute era.  Because the UGB is a high-altitude Rocky Mountain basin with elevations 

ranging from 2200 – 4300 m and a very short growing season, the region has always been the 

purview of mobile hunter-gatherers.  On the other hand, UGB geography (e.g., limited entry 

points for game and people) and environmental diversity rewarded foragers with many 

economically useful floral and faunal resources that varied with elevation, season, and climate. 

 Because the prehistory of the UGB is a story of shifting but always mobile land use, 

archaeologists require a tool kit that permits them to track the movement of people who left 

behind little but chipped stone tools and debitage.  Recent Utes occasionally made pottery, but 

like all who preceded them in the Basin, their sites are dominated by chipped-stone artifacts.  
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The assemblages of UGB occupants throughout prehistory consist of quartzite tools and debitage 

in percentages often exceeding 95% (Pitblado 2002; Stiger 2001, 2006).  This poses a challenge 

to archaeologists attempting to reconstruct land use strategies across time and space in the UGB:  

the lack of a geochemical (or any) sourcing strategy to support affiliating culturally modified 

quartzite recovered at archaeological sites with one of the Basin’s many sources of quartzite. 

Great Basin archaeologists and others working in regions where obsidian dominates 

forager assemblages have long exploited geochemical sourcing to develop and substantiate 

detailed interpretations of prehistoric mobility (e.g., Arkush and Pitblado, 2000; Beck and Jones 

1990, 2010; Hughes, 1992; Shackley, 1995).  Where this has occurred, sophisticated questions 

about hunter-gatherer behavioral change across time and space have been effectively addressed 

(e.g., Beck et al., 2002; Jones et al., 2003).  Not so in in the UGB.  As a result, archaeological 

reconstructions of Basin prehistory to date can be fairly critiqued as rudimentary (e.g., Stiger, 

2001), despite evidence for more than 10,000 years of intensive and dynamic prehistoric use 

(Lipe and Pitblado, 1999; Reed and Metcalf, 1999; Stiger, 2006).   

 

1.2.  Pilot study of the potential to discriminate among Upper Gunnison Basin quartzite sources         

 Recently (Pitblado et al., 2006, 2007, 2008), we conducted a small-scale study to assess 

the potential for discriminating one source of quartzite from another in the UGB.  We analyzed 

20 total quartzite samples, 8 from a Middle Archaic level at the multi-component Chance Gulch 

site (e.g., Pitblado, 2002; Stamm et al., 2004) and 12 from geological quartzite sources located 

both within one km of the Chance Gulch site and hundreds of km away.   

We divided each of the samples into 6 sub-samples and analyzed the sub-samples using 

petrography, ultraviolet fluorescence, instrumental neutron activation analysis (INAA), 

wavelength-dispersive x-ray fluorescence, acid digestion inductively coupled mass spectrometry 

(AD-ICP-MS) and laser ablation ICP-MS (LA-ICP-MS).  Although the sample was small (n = 

120 tests), INAA, AD-ICP-MS, and LA-ICP-MS successfully discriminated rocks from different 

sources and hinted at affiliations between Chance Gulch flakes and nearby quartzite sources.  

Because a goal of the Gunnison Basin archaeological research program is to lay the groundwork 

for sourcing culturally modified quartzite found across the UGB landscape, the fact that LA-ICP-

MS is essentially non-destructive gives it a distinct advantage over AD-ICP-MS and INAA (see 
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Giusanni et al., 2009; Neff, 2012; Resano et al., 2010, 2012; and Speakman and Neff, 2005 for 

examples and summaries of other recent applications of LA-ICP-MS).  That is the reason we 

applied the LA-ICP-MS method to the larger study reported here. 

Quartzite is a granular sedimentary or metamorphic rock that sometimes fractures 

conchoidally and can thus be suitable for production of chipped stone tools (Howard, 2005; 

Pitblado et al., 2008; Rapp, 2002).  It occurs commonly in the mountains as bedrock outcrops 

and in drainages that move the material downstream, and it has long been economically 

important to people throughout the Rocky Mountains (e.g., Black, 1991; Brunswig and Pitblado 

2007; Church, 1996; Pitblado, 1993, 1998, 1999, 2000, 2003).  Although quartzite is generally 

considered to consist of nearly pure silica, our pilot study showed UGB quartzite to be 

considerably “dirtier” (i.e., higher in constituents other than silica) than microcrystalline silicates 

such as chert, flint and chalcedony (Luedtke, 1978, 1979; Pitblado et al., 2008).     

Enrichment of components other than silica arises from incorporation of grains other than 

quartz (e.g., feldspars) and from the siliceous cement that binds the quartz grains together.  

Because of its variable mineralogy, Pitblado et al., (2008) concluded that petrography may offer 

a complement to geochemical techniques for quartzite source discrimination.  To determine the 

degree to which this is the case in the UGB, petrographic analysis continues for a subset of the 

402 samples sourced using LA-ICP-MS, and we will present those results in a separate paper.  

We focus here on UGB quartzite geochemistry, because for those pursuing archaeological 

provenance studies, any non-destructive technique—if its data alone provide adequate source-

discrimination power—is preferable to a technique that inflicts sample damage, as petrography 

does.  That said, Section 5.1 offers a glimpse as to how petrographic analyses can yield data 

capable of cross-checking and refining geochemical results. 

 

2.  Methodology 

2.1.  Field collection methods 

 The collection area covers most of the UGB and is centrally located (Fig. 1).  The project 

area is within Gunnison County, with the exception of the headwaters of Chance Gulch, which is 

in Saguache County.  Major geographic features in the study region include West Elk Peak, West 
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and East Elk Creeks, Tenderfoot (“W”) Mountain, Flat Top Mesa, Fossil Ridge, Chance Gulch, 

Blue Mesa Reservoir, Taylor Park Reservoir, Huntsman Mesa, Tomichi Creek, and the Gunnison 

River.  We sampled bedrock outcrop (primary) and gravel (secondary) quartzite exposures in and 

around these features (Fig. 1), focusing on three landscapes in particular (while still sampling 

widely throughout the UGB):  Chance Gulch (e.g., Pitblado, 2002; Stamm et al., 2004); quartzite 

quarry 5GN1 (Stiger, 2001) west of Gunnison; and the Parlin region east of Gunnison.   

We targeted outcrop and gravel source areas for several reasons.  First, prehistoric 

residents of the UGB quarried both source types equally.  An effective method for associating 

artifacts with sources must account for the presence of both.  Second, the gravel deposits provide 

a natural means to sample a robust range of quartzite in the UGB, past and present, because the 

gravels traveled to their current locations from various upstream locales through time.  In the 

case of ancient (e.g., older Tertiary) gravel deposits, for example, we can sample quartzite that 

once cropped out in the UGB high country, but due to tectonic, volcanic or erosional change in 

this geologically active region no longer does.  Finally, we could reasonably expect from the 

outset—and test during analysis—that trace-element signatures for the two source types will 

differ in nature, because UGB gravels typically derived from multiple quartzite outcrops as they 

formed, whereas primary outcrops are discrete geologic units.  Gravels are therefore expected to 

show greater trace-element diversity as depositional units than any quartzite outcrop, a point with 

implications for archaeological provenance studies. 

We located quarried outcrops through a Colorado State Historic Preservation Office 

(SHPO) site records search and non-quarried (or non-recorded) outcrops using geologic maps of 

the UGB.  The maps indicated the following quartzite-bearing units in the UGB:  Precambrian 

metaquartzite (DeWitt et al., 1985; Hedlund and Olson, 1974; Olson 1976 a, b; Zech, 1988); 

Cambrian Saguache orthoquartzite (DeWitt et al., 1985, 2002; Streufert, 1999; Zech, 1988); 

Jurassic Junction Creek locally quartzitic sandstone and Cretaceous Morrison Dakota formation 

orthoquartzite (DeWitt et al., 1985, 2002; Streufert, 1999; Zech, 1988); Jurassic Morrison and 

Cretaceous Burro Canyon, Dakota and Mesa Verde formation conglomerates with quartzite 

clasts (Gaskill, 1977; Gaskill et al., 1987, 1988; Hedlund and Olson, 1974; Olson, 1976a; 

Streufert, 1999); Cambrian Peerless formation contact-metamorphosed orthoquartzite (DeWitt et 

al., 1985, 2002; Zech, 1988); and gravels, discussed below. 
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The team located at least one exposure, and often several exposures of each of the 

aforementioned quartzite-bearing units (Table 1).  We used a Jacob’s staff to measure an outcrop 

in prescribed vertical increments, collecting fist-sized samples at each increment.  We then 

transected exposures laterally, intending and sometimes managing to systematically sample at 

fixed horizontal spacing.  However, many outcrops proved so laterally variable—grading from 

friable sandstone to well cemented quartzite and back—that we collected quartzite wherever it 

occurred within a given outcrop (although always controlling our vertical sampling interval).   

To locate cobbles in secondary settings such as alluvial fans and glacial moraines, we 

used SHPO records to identify previously recorded quarries and geologic maps identifying 

Tertiary and Quaternary gravels or gravel-bearing features (DeWitt et al., 1985, 2002; Gaskill et 

al., 1987; Olson, 1976a; Streufert, 1999; Tweto, 1987; Zech, 1999).  The mostly stream-laid (but 

occasionally glacial) cobbles required a different sampling strategy than outcrops.  Upon locating 

a quartzite-bearing gravel deposit, we laid a 30-m tape along an east-west or north-south axis.  At 

1-m intervals, we tested the cobble under or nearest the tape (looking right and then left up to 10 

cm) and recorded it as metamorphic, igneous, non-quartzitic sandstone, quartzite, or absent.  If 

quartzite, we removed a fist-sized sample; 10 per transect (Table 1).   

When we collected 10 samples before reaching the 30-m mark, we continued recording 

rock-type data to 30 m for later evaluation of intra- and inter-gravel deposit variability in UGB 

gravel quarries.  If we did not encounter 10 quartzite samples within 30 m, we continued along 

the same axis for another 30 m, and occasionally, yet another 30 m.  In no case did we need more 

than 90 m to collect 10 quartzite samples from gravels, and in each instance we recorded rock 

type at every meter along the complete transect length. 

 

Table 1 

Study sources, geologic settings, numbers of samples/locus (# analyzed), and locations 

Collection 

Locality 
Geologic Context 

No. Samples 

Collected 

UTM 

Easting 

UTM 

Northing 

OUTCROP SOURCES 

SC09-4  Precambrian Black Canyon schist (pϵbh)  3 307911 4251680 
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Collection 

Locality 
Geologic Context 

No. Samples 

Collected 

UTM 

Easting 

UTM 

Northing 

BP09-5 Paleoproterozoic  2 336915 4264148 

SC09-27-Xqt Paleoproterozoic quartzite (Xqt) dikes 9 324484 4260309 

SC09-23 Cambrian Saguache (ϵs) 10 359918 4282250 

BF09-7 Jurassic Junction Creek (Jj) 3 313980 4260326 

SC09-1 Jurassic Junction Creek (Jj)  7 314982 4259746 

SC09-10 Jurassic Junction Creek (Jj)  14 320669 4239062 

SC09-25 Jurassic Junction Creek (Jj) 6 310597 4258868 

SC09-26 Jurassic Junction Creek (Jj) 4 317625 4260356 

SC09-11 Jurassic Entrada (Je) 9 338846 4298849 

SC09-5 Jurassic Junction Creek (Jj) 13 314163 4259679 

SC09-7 Jurassic Junction Creek (Jj)  4 315084 4260106 

SC09-18 Jurassic Junction Creek (Jj) 8 343240 4256751 

SC09-21 Jurassic Entrada (Je)  5 336826 4306411 

SC09-20 Jurassic Morrison (Jm)  7 336737 4307122 

SC09-19 
Cretaceous Dakota/Burro Canyon (Kdb)/ 

Jurassic Morrison (Jm) 
6 358241 4260577 

BP09-1 Cretaceous Dakota/Burro Canyon (Kdb) 5 348774 4265520 

CD09-3 Cretaceous Dakota/Burro Canyon (Kdb) 9 349293 4265522 

CD09-4 Cretaceous Dakota/Burro Canyon (Kdb) 4 348387 4264728 

CD09-5 Cretaceous Dakota/Burro Canyon (Kdb) 3 348212 4264921 

COBBLE SOURCES 

5GN1982 Gravel deposit, age unknown 10 340332 4263394 

5GN2269 Gravel deposit, age unknown 10 323834 4267568 

5GN3510 Gravel deposit, age unknown 10 323549 4267736 

5GN840 Tertiary gravel deposit (Tg) 10 335672 4265014 
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Collection 

Locality 
Geologic Context 

No. Samples 

Collected 

UTM 

Easting 

UTM 

Northing 

5GN850-1 Gravel deposit, age unknown 10 336833 4264861 

5GN850-2 Gravel deposit, age unknown 10 336473 4265764 

5GN850-3 Gravel deposit, age unknown 10 336207 4265019 

5GN850-4 Gravel deposit, age unknown 10 336565 4264266 

5GN852 Gravel deposit, age unknown 10 (9) 337057 4264422 

5GN852-2 Gravel deposit, age unknown 10 (9) 337309 4264144 

5GN901 Gravel deposit, age unknown 10 337551 4264410 

BF09-4 Tertiary gravel deposit (Tg) 10 328108 4264371 

BP09-2 Quaternary fan (Qf) gravels 10 318634 4238765 

BP09-4 Gravel deposit, age unknown 10 323691 4269384 

BP09-6 Gravel deposit, age unknown 10 345670 4287319 

BP09-8 Quaternary (lf) gravels 10 335348 4305043 

CD09-2 Gravel deposit, age unknown 10 350394 4265573 

MP09-1 Tertiary gravel (Tg) deposit 10 (9) 308360 4244741 

SC09-12 Quaternary (Qg3/Bull Lake) gravels 10 336383 4296888 

SC09-13 Quaternary alluvium (Qa) gravels 10 336212 4296760 

SC09-2 Tertiary (Tw) gravels 10 335542 4269157 

SC09-22 Modern River Gravels 10 336515 4306335 

SC09-24 Quaternary debris flow (Qdb) gravels 10 340310 4282031 

SC09-3 Quaternary fan gravels 10 316690 4252721 

SC09-6 Gravel deposit, age unknown 10 315020 4260051 

SC09-8 Tertiary gravel and Tw deposit 11 337270 4273843 

SC09-9 Tertiary gravel and Tw deposit  10 340894 4274238 

VW09-1 Contemporary Taylor River gravel  3 364265 4299840 
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We conclude our discussion of project methodology with a note on quartzite 

identification.  In theory, quartzite looks nothing like other major rock types such as obsidian or 

chert, and archaeologists routinely characterize artifacts as quartzite on site forms.  In practice, 

however, we learned that when closely scrutinizing samples for their eligibility for a study of 

“quartzite” variability per se, attribution of rock type can be less straightforward.  One person’s 

well indurated sandstone is another’s quartzite, and missing a crystalline grain in a fresh 

exposure can introduce a grainy igneous rock into a quartzite database.  Additionally, there is the 

issue of how prehistoric people evaluated potential lithic raw materials:  it is unlikely that they 

contemplated the origin and taphonomic history of a durable (“grainy”) core candidate; they 

either could or could not control how it fractured and knapped materials accordingly. 

Predictably, our field collection database therefore includes samples that upon closer 

examination in the lab fell outside the spectrum of geologic “quartzite.”  We left such samples in 

the database, but we indicated their “closer-look” status in a distinct data column.  We did this 

because while our goal is indeed to discriminate among “quartzite” sources, our field 

identifications likely best approximate a behavioral definition of quartzite, and it is, after all, 

human behavior that we aim to better understand by developing a sourcing protocol.  However, it 

also made sense for some analyses to restrict our database to samples that qualified as quartzite 

from a geologic perspective.  Part I of our analysis (Section 3.1) included the complete 

“behaviorally—looks like it/acts like it—quartzite” database (n = 402 samples), while Part II 

(Section 3.2) used the more conservative subset of “geological quartzite” samples (n = 355) for 

reasons that will become clear.     

 

2.2.  Laboratory methods 

When we returned from the field, we divided each individual fist-sized sample into three 

smaller samples, one each for LA-ICP-MS analysis, petrographic evaluation, and an archive for 

future research.  Co-author Dehler assumed control of the petrographic samples, having them 

thin-sectioned and proceeding on to petrographic analysis.  We will touch on preliminary 

petrographic data, as noted, in Section 5.2 and report full results in a future paper.  We submitted 

samples for LA-ICP-MS to co-author Neff of the Institute for Integrated Research on Materials, 

Environment and Society (IIRMES), at California State University, Long Beach.  
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 IIRMES personnel tallied and created individual, unique sample IDs by combining the 

USU site designation and sample ID.  IIRMES found a few cases of improper or unclear 

labeling, and they removed these samples from the database.  Lab technicians prepared each 

quartzite sample for LA-ICP-MS analysis by removing two pieces and mounting each one 

separately on microscope slides, with a fresh break exposed for analysis.  Each individual piece 

underwent analysis three separate times, for a total of six analyses per sample.  

LA-ICP-MS analysis was undertaken on the IIRMES GBC Optimass TOF ICP-MS 

instrument.  Duwe and Neff (2007) and Neff (2010, 2012) have described TOF technology and 

its advantages for LA-ICP-MS in archaeology.  As a microprobe, the basic advantage of the TOF 

over conventional ICP-MS instruments is that the speed of data acquisition—30,000 full spectra 

collected per second in the GBC Optimass—permits high-sensitivity, high-precision analysis of 

even small particles, which would be consumed by the ablation with the longer data acquisition 

times required for quadrupole or magnetic-sector instruments (e.g., Neff and Sheets, 2005).  

In this study, IIRMES staffers ablated samples in a helium atmosphere with a New Wave 

UP213 laser ablation system.  Spots 75 microns in diameter were ablated with the laser set at 

60% power and firing ten times per second.  Signal intensities were averaged over five two-

second integrations measured by the TOF during each ablation.  

The LA-ICP-MS intensity data were calibrated to parts per million using NIST glass 

standards SRM614, SRM612, and SRM610 along with Little Glass Buttes obsidian.  The NIST 

glasses are appropriate for the rare earth elements and many other trace elements, and the 

obsidian extends the range of concentration values for magnesium, potassium, manganese, iron, 

and barium in order to achieve more accurate values for these elements.  

Neff (2010) has described the basic IIRMES approach to data calibration, a variation of 

one developed by Gratuze (1999).  It involves fitting standardized concentrations (ratios to 

silicon, monitored at mass 30) in the standards to standardized counts (ratios of raw counts to 

raw silicon counts in the standard).  That is, is the standardized signal for element y (subscript 

“is” indicates internal standard) is: 

 

is

y
y Signal

Signal
SS =  
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And the standardized concentration for element y is: 
 

is

y
y Conc

Conc
SC =  

 
Using the external standards, regression of SCy on SSy for each element yields parameters (slope, 

K and intercept) for calculating the standardized concentrations, SCy , in the unknowns.  In 

principle, the regression line should pass through zero, and experience has shown that forcing the 

regression through zero yields the best results.  With the intercept constrained to be zero, the 

slope, K, can now be used to calculate SCy in the unknowns by: 

 
)( yy SSKSC =  

 
And, since SCy is defined as the actual concentration divided by the internal standard 

concentration, the internal concentration of each analyte can be determined by dividing through 

by the internal standard concentration: 

 

isyyy ConcSSKConc )(=  

 
Further, one can ratio each side of the above equation to the total of all m elements measured in 

the sample, as follows: 

 
 

∑∑
=

=
m

i
isii

isyy

i

y

ConcSSK

ConcSSK

Conc

Conc

1

)(

)(
 

 
Gratuze (1999) recognized that in geological materials the elements that form rocks and minerals 

occur as oxides, so if it can be assumed that all of the constituents of the rock or mineral have 

been analyzed, the denominator on the left must equal 100% once the concentrations are 

converted to oxides.  The concentration of the internal standard also drops out, giving: 

 

%100
)(

)(

1
∑

=

=
m

i
iii

yyy
yox

SSKO

SSKO
Conc  
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where the Ois represent the element-specific oxide conversion factors.  If concentrations are in 

ppm, as in this case, the multiplication is by 1 million rather than 100%.  The resulting oxide 

concentrations can also be divided by the Ois in order to express the data as ppm-element rather 

than ppm-oxide.  

IIRMES lab personnel ran standards after every 25 unknown samples (approximately 

every 45 minutes) to account for instrument drift.  Each batch of 25 unknowns was then 

calibrated using average standardized signal (SSi) values obtained from bracketing sets of 

standards.  Background was removed by collecting a blank along with every set of standards, 

then subtracting the average of bracketing blank values from signal intensities for both the 

unknowns and standards.  All four external standards were used to calculate the Ky values for the 

elements Li, Be, Na, Mg, Al, Si, P, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Ga, Ge, As, 

Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, 

Tm, Yb, Lu, Hf, Ta, W, R, Au, Tl, Pb, Bi, Th, and U. 

A total of 2464 valid analyses were obtained on the 402 samples.  In a number of cases, 

one of the six replicate analyses was invalid, and averages were calculated on fewer than six 

analyses.  Microsoft Excel data files catalog separate tabulations for the 2464 analyses; the 

averages from each separate piece from each rock; and the average from all six analyses of each 

rock.  The latter worksheet is digitally archived at (insert URL for data archive) for other 

researchers to access.  With some exceptions early in the sequence, the six analyses for each rock 

have suffixes A1 through A3 and B1 through B3 for the two pieces.   

The essential question addressed in our study is whether geochemical variation in UGB 

quartzite shows sufficient patterning to permit an assessment of where the quartzite used 

prehistorically to manufacture artifacts may have been procured.  Geographical patterning can be 

evaluated directly by monitoring the extent to which elemental concentrations or dimensions 

derived from them (e.g., principal components) correlate with spatial variables, such as site 

designation, geological formation, or UTM coordinates.  Alternatively, pattern recognition 

techniques coupled with other statistical approaches can identify subgroup structure in the data, 

and the subgroups can be evaluated according to whether they show non-random distributions in 

space.  We used both approaches, and each yielded evidence of meaningful structure in the data.    

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 13 

3.  Results and Discussion 

3.1  Evaluation of sources by trace-elements and dimensions derived therefrom 

 Our evaluation of elemental concentrations in the UGB sources took as its basic unit of 

analysis averaged trace-element concentrations for the 48 locales and approached them first 

collectively and then as two distinct data sets consisting of outcrop (n = 20) and cobble (n = 28) 

sources respectively.  For each data set, we conducted principal components analyses (PCA) to 

determine how much inter-source geochemical variability the trace elements measured could 

explain.  Although we conclude from the results of all three analyses that geochemical signatures 

are not unique to individual quartzite sources in the UGB, we can also conclude that the UGB 

quartzite data are structured in ways that point to potential for archaeological sourcing. 

 In our first pass through the data, we focused on the complete 48-source data set, again 

with trace-element values averaged for each source.  Our PCA showed that 10 components 

account for 92% of the variability among all sources, with PC1 accounting for the majority 

(46%) of that total.  PC2, for reference, accounted for 12% of variability.  A cluster analysis of 

all sources based on the PCA (Fig. 2) revealed a separation between outcrop and cobble sources, 

with the latter nearly all captured by the largest cluster.  Although 7 outcrop sources cluster with 

the 28 cobble sources, the distinction between the two source types is nonetheless relatively 

sharp.  The anomalies represent samples that can be explored in the future at finer scales of 

analysis and also through petrographic evidence.  

 The reason the two kinds of quartzite sources divide as clearly as they do becomes 

apparent through an examination of a biplot derived from the principal components of the entire 

(non-averaged) data set (Fig. 3).  The plot shows that PC1 expresses correlated enrichment of 

many trace elements.  Fig. 4 shows that scores on this component are patterned geographically in 

the UGB, with the central and northern regions characterized by higher scores and the east- and 

west-central areas characterized by lower scores.  Cobble sources, by virtue of their multiple-

outcrop-source origins, show enriched trace-element variability when sampled as an assemblage 

and with trace-element composition averaged across the assemblage.  Bedrock sources show 

depleted trace-element signatures relative to the gravels, due to their more homogenous nature.  

 Having demonstrated that outcrop and cobble sources show distinctly different trace-

element compositions even when they can look alike, we next evaluated the two databases 
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independently to establish whether and how sources within each group can be discriminated 

from one another.  We began with outcrop sources, which showed depleted trace-element 

signatures compared to cobble sources.  As with the complete database, we ran a PCA of the 

outcrop data averaged by source and then performed a cluster analysis of those data.  The PCA 

indicates that six components account for 100% of the geochemical variability in the sample, 

with PC1 and PC2 accounting for 46% and 21% of variability, respectively, and PC6 for 3%.  A 

complete-linkage dendrogram shows ordering, and in one case true clustering, of outcrop sources 

by geological age:  Precambrian versus Jurassic versus Cretaceous (Fig. 5).   

The grouping is imperfect, with two Cretaceous-aged sources (CD09-3 and CD09-5) 

aligning with the Jurassic-aged sources; however, geologic age undeniably plays a role in 

structuring the geochemical signatures of UGB quartzite outcrops.  Figure 4 shows the 20 

sampled UGB outcrop sources (the blue “O”s on the map) labeled by geologic age.  The 

clustering within the Jurassic samples (Fig. 5), suggests that future, more in-depth analysis may 

permit additional discrimination among sources, possibly again by age (within the Jurassic 

period), or perhaps according to the differential induration that forms the localized quartzitic 

expressions of what is predominantly sandstone. 

 The final step in our holistic evaluation of trace-element data focused on the cobble-

source data set.  A PCA indicated that eight components account for 99% of geochemical 

composition variability in UGB cobble sources (compared to six components for the more 

homogenous outcrop sources—an indicator itself of the greater trace-element diversity of cobble 

deposits), with PC1 accounting for 31% of variability, PC2 24%, and PC8 3%.   

Complete-linkage dendrograms of cobble sources based on all components and upon 

PC1, respectively, suggest two distinct geographic trends.  Figure 6, based on all components, 

shows a major division between sources 5GN850-2 and 5GN2269 (marked for reference by a 

hatched dividing line).  Samples below that division are most likely to occur to the southeast of 

the center of the project area, conceived of for this discussion as the town of Gunnison (see Fig. 

6 compass-diagram inset and map Fig. 1).  This geographic tendency is driven by cobble sources 

sampled in the vicinity of the Chance Gulch site (see cross-hatching of Chance Gulch cobbles 

sources on the y-axis of Fig. 6).  The four other sources below the major dendrogram dividing 

line occur in other directions vis-à-vis Gunnison.  On the other hand, cobble sources that fall 
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above that line show a propensity to occur to the southwest, north, or northeast of Gunnison (Fig. 

6 compass-diagram inset).  We further note a subset of four samples, represented by the cross-

hatched arm of the upper compass plot, which fall in the bottom half of the upper cluster.  These 

samples, like those below the cluster divisor, derive from the Chance Gulch area.    

This outcome suggests that while cobble sources in the vicinity of Chance Gulch (and 

just southeast of Gunnison) do not tidily cluster together on the basis of their overall trace-

element signatures, about half of them are statistically different from other sources in the UGB 

assemblage.  Nearly the entire other half of the Chance Gulch sources occur near each other step-

wise in the cluster analysis and therefore order-wise in the dendrogram, suggesting more 

similarity from Chance Gulch source to Chance Gulch source than, for example, from Chance 

Gulch sources within that group to those occurring in the top third of the dendrogram.  The 

relative positioning of all the Chance Gulch sources near one-another in Fig. 6 suggests that 

future analysis should target these data to try to characterize and account for the variability (or 

similarity) in trace element signatures among gravels from the Chance Gulch portion of the 

UGB, as well as how those signatures compare to those from sources in other parts of the Basin.    

The Fig. 7 dendrogram reveals a second geographic tendency in the cobble-source data 

set, involving distance of the sources from the center of the project area.  Figure 7 organizes the 

cobble PC1 data set, in contrast to the complete cobble trace-element data of Fig. 6.  Focusing 

again on one major cluster division, all those sources (except VW09-1) falling below the break in 

the dendrogram are located geographically near the center of the project area.  Excluding the 

outlier, which is 46 km from Gunnison, all others in this group occur just 4 – 9 km from 

Gunnison, with a mean distance from Gunnison-to-source in this cluster of cobble sources of 7 

km.  As with directionality, the short mean distance of these sources from Gunnison is driven in 

part, but not exclusively, by the five Chance Gulch samples in this subsample (Chance Gulch is 7 

km from Gunnison).  Three of the four non-Chance Gulch sources below the dendrogram divisor 

(VW09-1 is again the exception), are located 7 – 9 km from the project’s center.   

As was the case with Fig. 6, the large grouping of sources that fall above the major 

cluster division show an intriguing two-part character with respect to their distance from 

Gunnison, with sources from the same general area, Chance Gulch, again responsible for the 

outcome.  All but one sample (SC09-2) in the upper two-thirds of the group occur at a much 
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greater distance from Gunnison than from the samples that cluster apart from them (discussed 

above) and from the lower one-third of samples within their group (with again, one exception, 

source BP09-8).  Excluding outlier SC09-2, which is located just 5 km from Chance Gulch, the 

upper two-thirds of sources occur at a range of 12 to 38 km from Gunnison (with a mean of 24 

km from Gunnison).  The lower third, excluding BP09-8 (37 km from study-area center), occur 

at ranges from 4 – 7 km, and a mean of 6 km from Gunnison.  As with the sources below the 

major cluster division, this mid-range set of sources is being influenced by nearby Chance Gulch, 

with four of the sources from that area; however, two of the three others are not from Chance 

Gulch, but are still located near the center of the project area.    

Together, Figs. 6 and 7 suggest that cobble sources located at the center of the UGB and 

immediately southeast of Gunnison have a different geochemical character than cobble sources 

located farther afield, primarily to the north-northeast, but also to the southwest.  This reveals 

meaningful geographic patterning in the geochemical signatures even of UGB cobble sources; 

patterning surely rooted in the geologic history of the Basin.  This in turn suggests that it will be 

possible to assign source-location parameters even to archaeological quartzite assemblages that 

derive from inherently heterogeneous cobble sources; and that further “peeling of the data-set 

onion” should permit more refined discrimination among cobble sources.  Although such peeling 

is beyond the scope of this paper, we note that UGB cobble-source diversity appears to be related 

to UGB drainage size, order, and position relative to major stream confluences. 

  

3.2  Quartzite subgroup identification and analysis 

 Another way to examine geochemical patterning in the data set is to search for relatively 

homogenous subgroups that can then be evaluated in terms of UGB geography.  We defined 

subgroups via pattern-recognition and statistical group evaluation techniques (Neff, 2002), an 

approach similar to that used with artifacts (unknowns) whose subgroup structure must be 

identified before projecting the groups against a source-sample database. 

 For defining subgroups, only specimens identified after closer scrutiny with a 10 X hand-

lens as quartzite were used to avoid defining spurious groups influenced by non-quartzite rocks.  

This reduced the working sample set from 402 to 355.  We identified subgroups by inspecting 

dendrograms from cluster analyses, principal components analyses, and by examining bivariate 
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elemental-concentration plots (Figs. 8a-c).  We carried out multivariate comparisons using 

Mahalanobis distances as well, but large differences in group size and large ranges of variation 

for some elements within some of the groups complicated such comparisons because of the need 

to select different subsets of elements depending on which groups were being comparing. 

 We identified six groups in the quartzite data, designated Q1, Q2a, Q2b, Q2c, Q3 and Q4.  

Group Q1 differs from the rest of the data in its high and very consistent sodium and aluminum 

values (Fig. 8a).  Gallium and thallium, which have valence electron configurations identical to 

aluminum, are also high in Group Q1.  Groups Q3 and Q4, meanwhile, are both high in calcium, 

while Q3 is also high in magnesium relative to the remaining data (Fig. 8b).  Groups Q2b and 

Q2c are similar in composition to Group 2a and were initially included in that group; however, 

on plots of aluminum versus rubidium (Fig. 8c) and aluminum versus potassium, Q2b and Q2c 

lie along correlation lines distinct from Q2a.  Q2b has relatively high concentrations of 

aluminum and Q2c has relatively high rubidium and potassium.  Fourteen samples were not 

assigned to any of the six groups, explaining the Table 2 sample grand total of 341, and not 355. 

 The six quartzite groups are distributed non-randomly among all the sources (Table 2), 

and outcrop versus cobble sources show distinctly different group distributions.  Most obviously, 

cobble sources comprise significantly more quartzite groups than most outcrop sources—yet 

another indicator of their greater heterogeneity vis-à-vis bedrock.  Precambrian outcrop sources 

are the exception, reflecting more quartzite groups than sources in younger formations.   

 

Table 2 

Frequencies of six compositional groups across the sampled sources 

 

  Subgroup  

Geological 
Unit 

Collection 
Location 

Q1 Q2a Q2b Q2c Q3 Q4 Grand Total 

OUTCROP SOURCES 

Kdb BP09-1  5     5 

Kdb CD09-3  9     9 

Kdb CD09-4  4     4 

Kdb CD09-5  2     2 
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  Subgroup  

Geological 
Unit 

Collection 
Location 

Q1 Q2a Q2b Q2c Q3 Q4 Grand Total 

Kdb/Jm SC09-19  4  2   6 

Jm SC09-20  4 2 1   7 

Jj/Jm SC09-26  3    1 4 

Jj SC09-1  7     7 

Jj SC09-10  7 5   1 13 

Jj SC09-18 1 7     8 

Jj BF09-7  3     3 

Jj SC09-25  6     6 

Jj SC09-7  4     4 

Jj SC09-5  10  1   11 

Je SC09-11  2 1  5  8 

Je SC09-21  5     5 

Xqt SC09-27-Xqt  1 3 1 1 1 7 

pϵ SC09-4  1 1    2 

ϵ SC09-23 2 3    5 10 

COBBLE SOURCES 

Cobble 5GN1982  7 1    8 

Cobble 5GN2269 2 4 2    8 

Cobble 5GN3510 1 7 1 1   10 

Cobble 5GN840 1 5     6 

Cobble 5GN850-1 1 5  2   8 

Cobble 5GN850-2 2 5     7 

Cobble 5GN850-3 1 8     9 

Cobble 5GN850-4 4 4 1 1   10 

Cobble 5GN852 2 4     6 

Cobble 5GN852-2 3 5    1 9 

Cobble 5GN901 2 4 1 1   8 

Cobble BF09-4  8 1    9 
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  Subgroup  

Geological 
Unit 

Collection 
Location 

Q1 Q2a Q2b Q2c Q3 Q4 Grand Total 

Cobble BP09-2  5 4   1 10 

Cobble BP09-4 1 5 1    7 

Cobble BP09-6 1 4 2  3  10 

Cobble BP09-8  2 1 3 1 2 9 

Cobble CD09-2 1 7 1    9 

Cobble MP09-1  5 4    9 

Cobble SC09-12 2 2  2 2  8 

Cobble SC09-13 2 3  2   7 

Cobble SC09-2 4 1 1    6 

Cobble SC09-22 2 1  1  3 7 

Cobble SC09-24 2 3 4  1  10 

Cobble SC09-6  10     10 

Cobble SC09-3  2 5   2 9 

Cobble SC09-8 4     2 6 

Cobble SC09-9 1     1 2 

Cobble VW09-1  3     3 

 Total 44 204 42 18 13 20 341 

   

 To explore further the spatial patterning in the occurrence of the groups, we transformed 

the data in Table 2 to percentages of the whole sample, and carried out multivariate analysis 

similar to those run previously on elemental concentration on the six-variable group-frequency 

data set.  A PCA of the group-percentage data shows that the major dimension of variance is a 

continuum from high values Q1 and Q4 (low PC1 score) to high Q2a, while high percentages of 

Q2b and Q3 drive PC2 scores down (Fig. 9).  These patterns are also expressed in a complete-

linkage cluster analysis (Fig. 10), which places collections dominated by Group Q2a to the near 

(but not entire) exclusion of other groups in the upper portion of the dendrogram, while 

collections dominated by Q2b and Q3 occur at the very bottom.  
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 To visually express these data, we placed each quartzite sample on a project area map, 

coded with a unique color representing each quartzite group.  Some quartzite samples, 14 of 355, 

do not fall into any of the six defined groups and thus do not appear on the map and are not 

included in counts.  Figure 11 shows all outcrop samples (n = 121) coded by group membership.  

Figure 12 shows the same data for all cobble sources (n = 220 samples).  Even the quickest of 

glances at the two maps side-by-side conveys that in the UGB, outcrop sources are far more 

homogenous in terms of group membership (reflected by groupings of the colors representing the 

groups) than cobble sources, and they are overwhelmingly dominated by the group Q2a (coded 

in black).  With few exceptions, outcrop sources that show quartzite group variability are of 

Precambrian age (SC09-4, SC09-23, and SC09-27-Xqt). 

 The cobble sources are heterogeneous with respect to quartzite group membership, such 

that samples from a single cobble locus are coded with many colors in Fig. 12.  Seventeen of the 

cobble sources contain quartzite representing three or more of the six groups (and eight of those 

sources represent four or five of the six groups).  Only two cobble sources reflect a single 

quartzite group:  VW09-1 and SC09-6.  The former does not appear in Fig. 12 because it is 

located in the very high country bounding the UGB to the west and just off the map.  That 

collection locus is Taylor Park Reservoir, elevation 2895 m.  We hypothesize that the VW09-1 

cobbles did not travel far from their highest possible point of origin and likely all derived from a 

single nearby outcrop of group Q2a.  SC09-6 is a cobble source located at the site of well-known 

outcrop quarry 5GN1.  Given its group homogeneity, and the fact that it matches the group of the 

also-homogenous surrounding outcrop sources (Q2a), we conclude that this particular gravel 

deposit was more locally derived than other gravel deposits sampled.    

 

4.  Archaeological Implications  

Our results show that UGB quartzite sources, outcrops and gravel deposits alike, express 

geochemical signatures with meaningful structure and patterning.  This bodes well for 

archaeological sourcing efforts for quartzite artifacts from sites in the UGB and perhaps 

elsewhere.  However, we must approach archaeological sourcing of quartzite differently than the 

routinely invoked approach scientists take to sourcing volcanic rocks (e.g., obsidian) with 

discrete geologic origins.  Rather than attempting a “match-the-artifact-to-the-geologic-source” 
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protocol (although see Shackley [1998] for a reminder that even obsidian sourcing establishes 

only a statistical probability that an obsidian sample derived from a particular geologic source), 

we conclude that with UGB quartzite, an assemblage-based approach will be more fruitful.  We 

illustrate how this protocol would work using the case of the multi-component Chance Gulch site 

that ultimately spawned the proof-of-concept research reported in this manuscript. 

Chance Gulch (Section 1.2), is a multi-component site located southeast of the town of 

Gunnison, Colorado.  Human occupations date to the late Paleoindian, Middle Archaic, and late 

Prehistoric periods, and the lithic assemblages for each, like nearly all sites in the UGB, consist 

overwhelmingly of quartzite.  Within 0.5 km of the site, numerous quartzite-rich gravel deposits 

occur, and many of these show evidence for prehistoric quarrying.  Manuscripts to date (e.g., 

Pitblado, 2002; Pitblado and Camp, 2003; Pitblado et al., 2001; Stamm et al., 2004) have 

therefore reported the inference that the quartzite recovered from the site originated in one or 

more of those local cobble sources, and that the cobble sources may in fact have drawn 

prehistoric people repeatedly to the Chance Gulch site.   

We cannot choose any single artifact from among the Chance Gulch assemblage, develop 

its geochemical profile, and expect to convincingly match it to a single UGB quartzite source.  

We propose instead an assemblage-based approach that entails treating the chipped stone 

debitage from each prehistoric occupation level as a unit, referred to hereafter as a “sub-

assemblage.”  We can add a fourth Chance Gulch sub-assemblage to the mix:  late Paleoindian 

projectile points from the site surface and excavation.  Prehistoric people typically curated these 

formal tools longer than other artifacts, and they therefore often represent more distant raw 

material sources (e.g., Binford, 1979; Keeley, 1982; Pitblado, 2011).  We can then select 10 

pieces of debitage per sub-assemblage, just as we sampled 10 quartzite cobbles per gravel 

source, and subject them to the LA-ICP-MS analysis performed on samples in the source dataset.   

Figure 13 shows in flow-chart form how interpretation of the results of those analyses 

would proceed, the sorts of questions we should ask and can reasonably expect to answer at 

various junctures, and the nature of archaeological conclusions we could draw and anticipate 

supporting with evidence.  We have not yet performed this study and do not wish to include such 

an analysis in this manuscript because like so many logical “next steps,” it exceeds the scope of 
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what we aim to convey here.  However, Fig. 13 outlines the methodology and general inferential 

process for a follow-up study that is in progress. 

Implementing an “if-then” approach to each Chance Gulch sub-assemblage can help 

quickly establish whether a sub-assemblage more likely derived from an outcrop or cobble 

source.  Then, whichever the answer for each sub-assemblage, we can draw increasingly specific 

conclusions about the nature and possible geographic location(s) of source candidates.  In so 

doing, we can establish probabilistic parameters for where lithic raw material could and could 

not have been quarried by Chance Gulch occupants.  This opens the door to testing hypotheses 

about mobility strategies that yielded a particular sub-assemblage result, and also to comparing 

the sub-assemblages to evaluate if and how use of chipped stone changed diachronically (and 

perhaps in the case of the projectile points, with respect to function) at the locality.   

 

5.  Conclusions and Future Research Directions 

5.1 Conclusions  

This paper has aimed to ascertain, via a first-pass through a robust data set, the minimum 

degree to which we can expect to discriminate among quartzite sources in the UGB using data 

generated through LA-ICP-MS.  We determined that UGB quartzite sources can be fruitfully 

characterized in two complementary ways:  through the holistic evaluation of the complete trace-

element database and by identifying quartzite groups that reflect particular combinations of trace 

elements and their concentrations.  Both approaches support the following conclusions: 

1. UGB quartzite from outcrop and cobble sources can be distinguished from one 

another accurately, although not perfectly. 

2. Outcrop sources are geochemically more homogeneous than cobble sources and 

are comparatively depleted in trace-elements relative to their gravel counterparts.  

3. Outcrop sources can be discriminated accurately, although again not perfectly, 

according to their geologic age (Precambrian versus Jurassic versus Cretaceous).  

4. Despite the heterogeneity of most cobble sources, they are still distributed across 

the UGB in discernible patterns.  These patterns suggest that further 

discrimination among even UGB cobble sources will be possible. 
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5. By adopting an assemblage-based, rather than artifact-based approach to 

geochemically characterizing modified quartzite at UGB sites, we can expect to 

obtain results that permit us to rule out some potential UGB sources of the 

material, and to ascertain the degree of consistency of the results with the 

geochemical signatures of sources not eliminated from consideration.  

 

5.2 The role of petrography in geochemical studies of UGB quartzite sources  

 We (Pitblado et al., 2008) have elsewhere discussed the differing character types of UGB 

quartzite, a function of their variable geneses (also see Section 2.1, this paper).  For example and 

most basically, the UGB assemblage contains both orthoquartzite (sedimentary) and 

metaquartzite (metamorphosed orthoquartzite or quartz sandstone).  Although both types of 

quartzite are quartz-rich, their variable and sometimes unpredictable origins may not be captured 

by geochemical analysis alone.  Both types of quartzite could in theory yield similar elemental 

signatures, yet have distinctive textures, grain composition, and cement (Fig. 14).  Petrographic 

analysis of thin sections of samples, however, captures the latter variables, allowing an 

independent evaluation as to whether samples likely represent the same or different sources (e.g., 

Fig. 15).  Petrography can also be used to cross-check any subset of geochemical results.   

 As reported in this paper, for example, exploratory cluster analyses (Figs. 2, 5, 6, 7, and 

10) revealed a few quartzite samples that do not conform to the general patterns that emerged.  

Petrographic analysis can help in two ways:  by independently confirming that the patterned data 

points do not include samples have similar geochemical signatures but actually represent 

different sources; and by illuminating why a given sample does not group with others known to 

be from the same or a nearby source.  From an archaeological perspective, we hope that 

petrographic analysis need not be a regular part of the protocol for archaeological sourcing 

studies, because it is destructive, whereas LA-ICP-MS is not.  However, its potential as a tool for 

evaluating individual samples as needed is significant and worth the effort of further study. 

 

5.3 Future research directions 
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 Having completed a first-pass analysis of the geochemistry of geological quartzite 

sources in the UGB, many future research directions present themselves.  These range from 

exploring variability in the quartzite assemblage addressed in this paper, but at higher-resolution 

scales than the assemblage as a whole; to determining whether and how quarried sources differ 

geochemically from those not prehistorically worked; to evaluating the Chance Gulch site 

quartzite assemblage (by level) as a test of the sourcing protocol presented in Section 4; to 

identifying, sampling and developing geochemical signatures for additional UGB sources. 

  Opportunities to expand this preliminary research outside the UGB abound as well.  For 

our own research, we will sample geologic sources of quartzite immediately outside the UGB, 

which could yet be part of the sourcing universe exploited by prehistoric occupants of the Basin 

(see Black, 1991 and Baker, 2008 for relevant land-use hypotheses).  Beyond our own research 

domain, we note that quartzite is commonly exposed around the world, and humans and their 

pre-human ancestors used it to manufacture everything from Olduvai choppers to colossal 

Egyptian statues.  If the archaeological sourcing protocol we have proposed here can be refined 

and more broadly applied, many archaeologists, and for that matter, earth scientists, will benefit.  
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Figure Captions 

  

1. Location of all project area and all UGB quartzite sources sampled in this study, with 

primary bedrock outcrop sources distinguished from secondary cobble (gravel) sources.  

2. Dendrogram produced by complete-linkage cluster analysis of averaged trace-element 

signatures for 48 source localities sampled in the UGB.  Dendrogram based on a principal 

components analysis (PCA) of the data set.  Note the general separation of cobble and 

outcrop sources. 

3. Biplot (i.e., simultaneous plot of variables and objects) derived from PCA of the 

correlation matrix of the complete quartzite data set.  Vectors connect variable 

coordinates with the origin to depict inter-elemental correlations.  Principal Component 1 

subsumes approximately 46% of total variance in the data, and Principal Component 2 

subsumes approximately 12% of total variance. 

4. Map showing geographic distribution of outcrop and cobble samples with high and low 

PC1 values respectively, with high PC1 values indicating overall trace-element 

enrichments of a source and low PC1 values indicating trace-element depletion in a 

source. Map also shows geologic ages of outcrop sources. 

5. Dendrogram produced by complete-linkage cluster analysis of averaged trace-element 

signatures for bedrock outcrop sources only, showing ordering of results by geologic age.  

Asterisks denote non-Jurassic sources that clustered with others representing the Jurassic. 

6. Dendrogram produced by complete-linkage cluster analysis of averaged trace-element 

signatures of UGB cobble sources.  Inset compass plots show the predominant direction 

(from a central project-area origin defined as the town of Gunnison) of sources within 

each of the two major clusters.  Chance Gulch cobble sources are cross-hatched. 

7. Dendrogram produced by complete-linkage cluster analysis of cobble-source PC1 data.  

Insets are another form of compass plot that shows the direction and distance of each 

cobble-source in each major cluster from Gunnison.  Chance Gulch samples have been 

highlighted and shown in bold on the upper compass plot. 
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8. Bivariate plots of element concentrations in samples, with ellipses representing 90% 

confidence level for membership in source groups:  (a)  aluminum and sodium 

concentrations in all quartzite samples analyzed in this study; (b) magnesium and calcium 

concentrations in quartzite samples assigned to groups Q1, Q2a, Q3, and Q4; (c) 

aluminum and rubidium concentrations in quartzite samples assigned to groups Q1, Q2a, 

Q2b, and Q2c.   

9. Biplot derived from PCA of the group frequency data.  Data points are sources listed in 

Tables 1 and 2.  Proximity to the end of each vector indicates the extent to which the site 

collection is dominated by the group the vector represents.   

10. Dendrogram of all sources (outcrops and cobbles) derived from complete-linkage cluster 

analysis of the quartzite group frequency data of Table 2.  Group Q2a dominates the 

upper portion of the dendrogram; the other groups occur primarily nearly the bottom.   

11. Map showing the distribution of quartzite groups for every sample from every outcrop 

source included in this study.  In contrast to the cobble-source pattern shown in Fig. 12, 

note the homogenous colors among specimens removed from outcrop sampling loci.   

12. Map showing the distribution of quartzite groups for every sample from every cobble 

source included in this study.  In contrast to the outcrop pattern shown in Fig. 11, note the 

heterogeneous colors among specimens removed from cobble sampling loci. 

13. Flow chart illustrating how interpretation of quartzite assemblages from UGB sites can 

proceed and the nature of potential source parameters we can expect to establish for a 

given assemblage.  Note that this sourcing process differs in kind from the procedure 

used to “source” obsidian artifacts, whereby a geochemist compares the signature of an 

obsidian artifact against the signatures of possible geologic sources and identifies (or fails 

to identify) a statistically probable match.   

14. Photomicrographs of UGB quartzite samples representing three of the six geochemically 

defined groups discussed in Section 3.2:  (a) SC09-23A—Feldspathic sandstone from the 

Cambrian Sawatch Formation (geochemical group Q4).  Note the partially weathered 

feldspar grain in the middle of the photomicrographs and associated quartz grains and 

small pockets of calcite cement.  Left photo plane light, right photo cross-polars, 

magnification 20X; (b) 5GN850-4B—Biotite-bearing quartz sandstone from a cobble 

source (group Q1).   The larger angular quartz grains are heavily fractured.  The presence 
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of a significant amount of detrital biotite could explain why this sample falls into a 

different geochemical group.  Left photo plane light, right photo cross-polars, mag. 10X; 

(c) MP09-1A—Feldspathic sandstone from a cobble source (group Q2A).  Note well 

developed quartz overgrowths and weathered feldspar (yellow-stained grain).  Left photo 

plane light, right photo cross-polars, mag. 20X; (d) SC09-19C—Well-cemented lithic- 

and quartz-rich sandstone from the Dakota Formation (group Q2A).  The “dirty grains” in 

photo on right are volcanic rock fragments.  All other grains are quartz.  The grains are 

cemented by zebraic chalcedony (another form of quartz).  Left photo plane light, right 

photo cross-polars, mag. 10X; (e) SC09-27-xqt—Precambrian metamorphic quartzite 

(group Q4).  Note sutured boundaries between quartz grains.  The other light brown 

mineral is likely staurolite or andalusite, metamorphic minerals with complex chemical 

signatures that would make this rock type stand out with respect to other samples.  Cross-

polars, mag. 10X.  Of the specimens illustrated here, only “d” showcases quartzite from 

an archaeological quarry, demonstrating that prehistoric UGB tool-makers did not avoid 

quartzite that deviates from the classic geologically defined version of the rock. 

15. Petrographically determined composition of the six geochemically defined groups in the 

UGB assemblage.  Compositional groups determined by using standard point-counting 

methods (100 point counts per sample).  N = 2 per category, except for SC09-27xqt (N 

=1).  Q = quartz; F = feldspar; L = lithic (i.e., a rock fragment).   The pink outlier (SCO9-

27xqt) is actually a metamorphic rock, but we kept it in to illustrate that it is quartz-poor 

relative to the other samples.  Note that the samples of each of the other geochemical 

groups pair together, yet there is some overlap between the groups.  The Dakota 

formation (again, a source that was prehistorically quarried) and Sawatch samples appear 

to be geochemically and mineralogically different enough from each other and the other 

groups that they could be recognized as distinct quartzite bedrock sources in the 

Gunnison Basin.  Last, note that all but 2 of the samples do not lie within the 

compositional field for geologically defined quartzite. 
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Considering averaged trace elements by source, does the sub-

assemblage group with outcrop or cobble collection loci? 

Considering the sub-assemblage within the context 

of the UGB outcrop database, is its averaged trace-

element signature consistent with a Precambrian, 

Jurassic or Cretaceous age (or none of these)? 

Considering the sub-assemblage within the context of the 

UGB cobble database, is its averaged trace-element 

signature consistent with localized (mostly southeastern) 

sources or more distant (mostly northerly) sources? 

COBBLE OUTCROP 

Establishes parameters for 

outcrop source quarried; in 

this case, the Parlin area to 

the east (Fig. 18) is the nearest 

known source; other K-aged 

outcrops are also possible 

sources. 

How many quartzite groups are 

represented in the sub-assemblage?   

1  >1 

Which quartzite 

groups occur in the 

sub-assemblage?   

Homogeneity reinforces the 

conclusion that the source was 

an outcrop, not a cobble 

deposit. 

Most outcrops show a single 

group.  If n = 2, the particular 

combination of groups may be 

consistent with a source; if n > 

2, source is likely Precambrian. 

Cobbles likely derived from the 

area immediately surrounding 

Chance Gulch or another 

deposit in the central UGB. 

Cobbles likely not derived from 

the central UGB; consider 

cobble deposits to the (distant) 

N/NE or possibly to the SW. 

Is quartzite group Q3 represented in 

the sub-assemblage?   

Yes No 

Source is likely located 

12 km or more north 

of Chance Gulch.  

Are quartzite groups Q2a & Q2b 

about equally represented, with or 

without a low presence of Q4? 

Yes 

Source is likely located 

20 km or more south-

west of Chance Gulch.  

No 

Continue analysis of 

cobble sources in and 

outside of the UGB by 

quartzite group. 

If exclusively or almost exclusively Q2a, source is Jurassic 

or Cretaceous in age.  Concordance with the grouping in 

dendrogram #1 should be evaluated to strengthen 

outcrop-age inference.  Q2a outcrops nearby to the east 

(Parlin) and west (near 5GN1).  It also outcrops to the 

north, but if this is the sub-assemblage source direction, 

we can expect to see co-occurrence of Q2b, Q2c, and/or 

Q3.  If sub-assemblage contains Q4, its outcrop source 

was almost certainly Precambrian in age.  Check for 

concordance of other evidence that could point to an 

origin of this antiquity.  

Fig. 13
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