153 research outputs found

    Gene × environment interactions in schizophrenia: evidence from genetic mouse models

    Get PDF
    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia

    Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines

    Get PDF
    The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic) and drug metabolising (pharmacokinetic) enzymes have been analysed as individual markers and/or signatures of markers. We found a significant association between TYMP S471L (rs11479) and early dose modifications and/or severe adverse events (adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively). There was also a significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively). We did not identify any significant associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of these markers

    Capturing protein communities by structural proteomics in a thermophilic eukaryote:Structural systems biology of lysates

    Get PDF
    The arrangement of proteins into complexes is a key organizational principle for many cellular functions. Although the topology of many complexes has been systematically analyzed in isolation, their molecular sociology in situ remains elusive. Here, we show that crude cellular extracts of a eukaryotic thermophile, Chaetomium thermophilum, retain basic principles of cellular organization. Using a structural proteomics approach, we simultaneously characterized the abundance, interactions, and structure of a third of the C. thermophilum proteome within these extracts. We identified 27 distinct protein communities that include 108 interconnected complexes, which dynamically associate with each other and functionally benefit from being in close proximity in the cell. Furthermore, we investigated the structure of fatty acid synthase within these extracts by cryoEM and this revealed multiple, flexible states of the enzyme in adaptation to its association with other complexes, thus exemplifying the need for in situ studies. As the components of the captured protein communities are known-at both the protein and complex levels-this study constitutes another step forward toward a molecular understanding of subcellular organization

    EXIT-chart aided hybrid multiuser detector design for frequency-domain-spread chip-interleaved MC-CDMA

    Get PDF
    With the advent of EXtrinsic Information Transfer (EXIT) charts, we are capable of analyzing, predicting and visually comparing the convergence behaviours of different turbo Multi-User Detectector (MUD)s. The different MUDs have diverse EXIT characteristics and hence their superposition allows us to create a combined EXIT curve, which closely matches that of the channel decoder. Hence a near-capacity operation is facilitated by combining the benifits of different MUDs and therefore to create a superior MUD. Thus in this contribution, we propose a novel hybrid MUD combining scheme, which combines the advantages of a high performance and low complexity in form of an advanced hybrid MUD solution. The transmitted bits are unknown at the receiver, hence it is not feasible to directly evaluate the mutual information gain of the iterative MUD in consecutive iterations, hence we propose a realistic algorithm for estimating this mutual information gain, which is then used for activating the most appropriate constituent MUD as and when it is necessary. The constituent MUDs are the Matched Filter (MF) based Soft Interference Cancellation (SoIC) and the optimum Bayesian MUDs, which are invoked in the scenario of Frequency-Domain-Spread Chip-Interleaved (FDSCI) Multiple Carrier Code Division Multiple Access (MC-CDMA). The resultant hybrid MUD is capable of outperforming both the MF-SoIC and Bayesian turbo MUDs in the terms of the attainable complexity and Bit-Error-Rate (BER) performance

    Signatures of Quark-Gluon-Plasma formation in high energy heavy-ion collisions: A critical review

    Full text link
    A critical review on signatures of Quark-Gluon-Plasma formation is given and the current (1998) experimental status is discussed. After giving an introduction to the properties of QCD matter in both, equilibrium- and non-equilibrium theories, we focus on observables which may yield experimental evidence for QGP formation. For each individual observable the discussion is divided into three sections: first the connection between the respective observable and QGP formation in terms of the underlying theoretical concepts is given, then the relevant experimental results are reviewed and finally the current status concerning the interpretation of both, theory and experiment, is discussed. A comprehensive summary including an outlook towards RHIC is given in the final section.Comment: Topical review, submitted to Journal of Physics G: 68 pages, including 39 figures (revised version: only minor modifications, some references added

    Present Status and Future of DCC Analysis

    Get PDF
    Disoriented Chiral Condensates (DCC) have been predicted to form in high energy heavy ion collisions where the approximate chiral symmetry of QCD has been restored. This leads to large imbalances in the production of charged to neutral pions. Sophisticated analysis methods are being developed to disentangle DCC events out of the large background of events with conventionally produced particles. We present a short review of current analysis methods and future prospects.Comment: 12 pages, 5 figures. Invited talk presented at the 13th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 97), Tsukuba, Japan, 1-5 Dec 199

    A complex-centric view of protein network evolution

    Get PDF
    The recent availability of protein–protein interaction networks for several species makes it possible to study protein complexes in an evolutionary context. In this article, we present a novel network-based framework for reconstructing the evolutionary history of protein complexes. Our analysis is based on generalizing evolutionary measures for single proteins to the level of whole subnetworks, comprehensively considering a broad set of computationally derived complexes and accounting for both sequence and interaction changes. Specifically, we compute sets of orthologous complexes across species, and use these to derive evolutionary rate and age measures for protein complexes. We observe significant correlations between the evolutionary properties of a complex and those of its member proteins, suggesting that protein complexes form early in evolution and evolve as coherent units. Additionally, our approach enables us to directly quantify the extent to which gene duplication has played a role in the evolution of complexes. We find that about one quarter of the sets of orthologous complexes have originated from evolutionary cores of homodimers that underwent duplication and divergence, testifying to the important role of gene duplication in protein complex evolution

    Interrogating domain-domain interactions with parsimony based approaches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification and characterization of interacting domain pairs is an important step towards understanding protein interactions. In the last few years, several methods to predict domain interactions have been proposed. Understanding the power and the limitations of these methods is key to the development of improved approaches and better understanding of the nature of these interactions.</p> <p>Results</p> <p>Building on the previously published Parsimonious Explanation method (PE) to predict domain-domain interactions, we introduced a new Generalized Parsimonious Explanation (GPE) method, which (i) adjusts the granularity of the domain definition to the granularity of the input data set and (ii) permits domain interactions to have different costs. This allowed for preferential selection of the so-called "co-occurring domains" as possible mediators of interactions between proteins. The performance of both variants of the parsimony method are competitive to the performance of the top algorithms for this problem even though parsimony methods use less information than some of the other methods. We also examined possible enrichment of co-occurring domains and homo-domains among domain interactions mediating the interaction of proteins in the network. The corresponding study was performed by surveying domain interactions predicted by the GPE method as well as by using a combinatorial counting approach independent of any prediction method. Our findings indicate that, while there is a considerable propensity towards these special domain pairs among predicted domain interactions, this overrepresentation is significantly lower than in the iPfam dataset.</p> <p>Conclusion</p> <p>The Generalized Parsimonious Explanation approach provides a new means to predict and study domain-domain interactions. We showed that, under the assumption that all protein interactions in the network are mediated by domain interactions, there exists a significant deviation of the properties of domain interactions mediating interactions in the network from that of iPfam data.</p

    A domain-based approach to predict protein-protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowing which proteins exist in a certain organism or cell type and how these proteins interact with each other are necessary for the understanding of biological processes at the whole cell level. The determination of the protein-protein interaction (PPI) networks has been the subject of extensive research. Despite the development of reasonably successful methods, serious technical difficulties still exist. In this paper we present DomainGA, a quantitative computational approach that uses the information about the domain-domain interactions to predict the interactions between proteins.</p> <p>Results</p> <p>DomainGA is a multi-parameter optimization method in which the available PPI information is used to derive a quantitative scoring scheme for the domain-domain pairs. Obtained domain interaction scores are then used to predict whether a pair of proteins interacts. Using the yeast PPI data and a series of tests, we show the robustness and insensitivity of the DomainGA method to the selection of the parameter sets, score ranges, and detection rules. Our DomainGA method achieves very high explanation ratios for the positive and negative PPIs in yeast. Based on our cross-verification tests on human PPIs, comparison of the optimized scores with the structurally observed domain interactions obtained from the iPFAM database, and sensitivity and specificity analysis; we conclude that our DomainGA method shows great promise to be applicable across multiple organisms.</p> <p>Conclusion</p> <p>We envision the DomainGA as a first step of a multiple tier approach to constructing organism specific PPIs. As it is based on fundamental structural information, the DomainGA approach can be used to create potential PPIs and the accuracy of the constructed interaction template can be further improved using complementary methods. Explanation ratios obtained in the reported test case studies clearly show that the false prediction rates of the template networks constructed using the DomainGA scores are reasonably low, and the erroneous predictions can be filtered further using supplementary approaches such as those based on literature search or other prediction methods.</p
    corecore