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Abstract: The arrangement of proteins into complexes is a key organizational principle for many 

cellular functions. Although the topology of many complexes has been systematically analyzed 

in isolation, their molecular sociology in situ remains elusive. Here, we show that crude cellular 

extracts of a eukaryotic thermophile, Chaetomium thermophilum, retain basic principles of 

cellular organization. Using a structural proteomics approach, we simultaneously characterized 

the abundance, interactions and structure of a third of the C. thermophilum proteome within these 

extracts. We identified 27 distinct protein communities that include 108 interconnected 

complexes, which dynamically associate with each other and functionally benefit from being in 

close proximity in the cell. Furthermore, we investigated the structure of fatty acid synthase 

within these extracts by cryoEM and this revealed multiple, flexible states of the enzyme in 

adaptation to its association with other complexes, thus exemplifying the need for in situ studies. 

As the components of the captured protein communities are known – at both the protein and 

complex level – this study constitutes another step forward towards a molecular understanding of 

subcellular organization. 

 

Keywords: Computational modeling, cryo-electron microscopy, fatty acid synthase, interaction 

proteomics, metabolon. 

 

 

Thumb text: We developed an integrative structural systems biology approach to characterize 

systematically native protein communities of dynamically associated protein complexes. Cryo-

electron microscopy detects a metabolon involved in fatty acid synthesis at unprecedented 

molecular details. 

 

Synopsis:  

 In addition to the grouping of proteins into complexes, intracellular function requires a 

further layer of organization that involves multiple spatially and temporally interacting 

macromolecular complexes or protein communities. However, experimental approaches 

to capture this higher-order proteome organization are still missing. 

 Here, we show that crude cellular fractions from a thermophilic eukaryote retain basic 

principles of proteome organization, and can be exploited to capture protein communities 

through integrative structural biology approaches. 

 We report a compendium of 27 protein communities and have experimentally 

characterized and structurally analyzed one of these comprising enzymes involved in 

fatty acid metabolism. 

 From the crude extracts, we obtained a cryo-EM structure of fungal fatty acid synthase 

that reveals a thus far uncharacterized catalytic intermediate. We demonstrate the 

feasibility of high-resolution cryoEM without the need to obtain biochemically highly 

homogenous samples. 
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Introduction:  

As the molecular machines of the cell, protein complexes are the cornerstones of most biological 

processes, and are the smallest, basic functional and structural units of proteome organization 

(Duve, 1975; Gavin et al, 2002; Krogan et al, 2006).  Many individual studies and extensive 

proteome-wide screens in a variety of organisms have identified comprehensive repertoires of 

protein complexes and have provided insights into their molecular composition and anatomy 

(Amlacher et al, 2011; Gavin et al, 2002; Havugimana et al, 2012; Hoffmann et al, 2015; Krogan 

et al, 2006; Kuhner et al, 2009; Lapinaite et al, 2013; von Appen et al, 2015; Wan et al, 2015; 

Yan et al, 2015). These studies relied on extensive biochemical purification, often including 

multiple sequential steps or dimensions, and so inherently selected for the most biophysically 

stable assemblies. However, protein complexes – as an organizational principle – cannot account 

alone for the complex integration of the many cellular processes in situ. Additional layers of 

functional organization, beyond free diffusion and random collision of functional biomolecules 

within organelles, are required to ensure, for example, the efficient transfer of substrates along 

enzymatic pathways (dubbed metabolons (Wan et al, 2015; Wheeldon et al, 2016; Wu & 

Minteer, 2015)), the effective transduction of signals (Wu, 2013), and the synthesis of proteins 

according to the local cellular needs (Gupta et al, 2016). This requires spatially and temporally 

synchronized sets of protein complexes – protein communities (Barabasi & Oltvai, 2004; 

Menche et al, 2015) – which we define as higher-order, often dynamically associated, assemblies 

of multiple macromolecular complexes that benefit from their close proximity to each other in 

the cell. To date, protein communities have not been properly conceptualized because 

experimental frameworks to capture this higher-order proteome organization are missing.  

We used cell fractions from a thermophilic eukaryote, Chaetomium thermophilum 

(Amlacher et al, 2011), to delineate and characterize protein communities in crude extracts that 

retain aspects of cellular complexity. Our experimental design, in particular our choice of a 

thermophilic organism to minimize the disassembly of protein-protein interactions and the 

respective fractionation conditions, favor the identification of especially higher molecular weight 

species. To cope with the complexity of such samples, we combined quantitative mass 

spectrometry (MS) with electron microscopy (EM) and computational modeling approaches. We 

computed a network capturing various communities and demonstrate its usefulness for further 

analysis. We used cross-linking mass spectrometry (XL-MS) and electron microscopy (EM) to 

validate our approach, which shows that crude cellular extracts retain the basic principles of 

proteome organization. They are amenable to high-resolution cryoEM analyses of the sociology 

of protein complexes within their higher-order assemblies. As the proteins can be readily 

identified within these extracts, our methodological framework complements the emerging 

single-cell structural biology approaches that provide high-resolution snapshots of subcellular 

features (Beck & Baumeister, 2016; Mahamid et al, 2016) but are currently unable to pinpoint 

the underlying biomolecular entities. 

Results: 

Cellular fractions serve as a proxy for the cellular environment and retain basic principles 

of cellular organization. Many fundamental components of the cell were first structurally 

investigated from thermophlic archaea because protein interactions in thermophiles have higher 

stability compared to their mesophilic counterparts. We chose to study the thermophilic 

eukaryote, Chaetomium thermophilum, a promising model organism for structurally 
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investigating eukaryotic cell biology, because protein communities may be more robust than 

those from other model systems. 

Large-scale analyses based on extensive, multi-dimensional fractionation have been 

applied to characterize protein complexes from various organisms and cell lines. These have all 

demonstrated that protein complexes – as biochemically highly stable entities – are a ubiquitous 

organizational principle (Wan et al, 2015). Our goal here was to capture more transient, higher-

order associations and to characterize the functional organization of a eukaryotic proteome under 

conditions that mimic the native, cellular state. To achieve this, we obtained simple and crude 

cellular fractions (simplified cell lysates) from a thermophilic fungus C. thermophilum by single-

step analytical size exclusion chromatography (SEC) (Fig. 1). The chromatographic method used 

here achieves relatively high resolution compared with gel filtration methods commonly used on 

a preparative scale (Kristensen et al, 2012) and the resulting 30 fractions span molecular weights 

ranging from ~0.2 to ~5 MDa. We first analyzed these fractions in biological triplicate by label-

free quantitative liquid chromatography-mass spectrometry (LC-MS/MS) to characterize co-

eluting proteins, complexes and communities. We identified 1,176 proteins across all fractions 

that were present in at least two of the triplicates (Dataset EV1, Appendix Fig. S1A), which 

account for 27.4% of the expressed proteome of C. thermophilum (Bock et al, 2014). For 

comparison, in human HeLa and U2OS cell lines, 19% and 29% of the proteome elutes in these 

high molecular weight SEC fractions, respectively (Kirkwood et al, 2013; Kristensen et al, 

2012). Of these 1,176 proteins, 97% have a molecular weight less than 200 kDa as a monomer 

but were still reproducibly identified in fractions corresponding to larger molecular masses, 

suggesting that most are engaged in large macromolecular assemblies.  

Next, we determined an experimental elution profile for each protein by quantifying 

protein abundance based on iBAQ scoring (Schaab et al, 2012). The abundance of the detected 

proteins spans five orders of magnitude (Appendix Fig. S1B-C), demonstrating that relatively 

rare complexes are also captured in this process. The elution profiles correlate well across the 

biological triplicates (squared Pearson coefficient; 0.82 < r2 < 0.88)(Appendix Fig. S1B-C and 

Dataset EV1). Similarly, the protein composition of each SEC fraction was generally highly 

reproducible (Pearson coefficient; 0.61  < r < 0.98) (Appendix Fig. S1D and Dataset EV1). To 

further assess the quality and effectiveness of the biochemical separation, we determined 

whether the observed elution profiles matched the composition, molecular weight and 

stoichiometries of well-characterized and conserved protein complexes as contained in the 

Protein Data Bank (PDB) (Berman et al, 2000). We generated 3D interaction models for 378 out 

of the identified 1,176 C. thermophilum proteins using comparative structural modeling that 

takes into account species-specific differences (cutoffs: > 30 % sequence coverage, > 30 % 

sequence identity; Appendix Figs. S2 and S3, Dataset EV2, details in the Materials and 

Methods). The resulting benchmark set of structurally known protein complexes comprises 34 

heteromers (involving 212 proteins) and 166 homomers, the latter mainly consisting of metabolic 

enzymes (Appendix Fig. S2E). As expected, the subunits of the heteromultimeric complexes 

typically co-eluted in the same biochemical fractions (Fig. 2A, Dataset EV2 and Appendix Fig. 

S4), although a considerable number of proteins showed multiple elution peaks indicating that 

they are engaged in various complexes (Kuhner et al, 2009). For 102 protein complexes that 

eluted in a single peak (Dataset EV2), we also compared their predicted molecular weights to 

those estimated from their retention time (tR) during SEC elution (Fig. 2B). In 52 well-

characterized cases – for example, the chaperonin-containing TCP-1 (CCT) complex or the 19S 

proteasome – we observed a good agreement between the expected and observed tRs, further 
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validating the general efficiency of the cell lysate separation procedure. However, 50 protein 

complexes eluted at much higher molecular weights than anticipated from their structural 

models. These shifts are unlikely to be due to non-specific post-lysis protein aggregation as no 

visible aggregates were formed under our experimental conditions (EM analysis, see below). 

They are therefore probably functionally relevant as we observed that co-eluting complexes 

share the same functional ontology (independent two-sample t-test p-value = 3.88E-50, 

Appendix Fig. S5) or directly interact (cross-linking experiments, see below), suggesting a 

functional relationship. This is consistent with the view that protein complexes might self-

assemble with higher stoichiometries, contain additional components – i.e. RNA, DNA, 

metabolites or proteins – and/or form uncharacterized, protein communities. An interesting 

example is the glycolytic enzyme enolase (EC 4.2.1.11) that forms a structurally characterized 

dimer in vitro (2 x 47.7 = 95.4 kDa; (Kuhnel & Luisi, 2001); PDB:2AL2) but seems to be part of 

a ~4 MDa assembly in the cellular fractions of C. thermophilum (Fig. 2B). This supports 

previous indications that enolase participates in higher-order multienzyme assemblies, such as 

the somewhat elusive eukaryotic glycolytic metabolon (Menard et al, 2014). Overall, our 

operational definition of protein communities using a reproducible and sensitive structural 

proteomics approach captures important snapshots of the functional organization of cellular 

proteomes. 

A compendium of C. thermophilum protein complexes within protein communities. We next 

used the protein elution profiles in conjunction with known functional associations to 

systematically define protein communities. Correlations between profiles can indicate 

membership of the same complex (Havugimana et al, 2012; Kristensen et al, 2012) or of protein 

communities that perform functions in a spatiotemporal context. For all possible protein pairs in 

the dataset, we calculated a Pearson correlation coefficient (cross-correlation co-elution (CCC) 

score), to measure the similarity of their elution profiles (see Materials and Methods for 

details). Although distinct complexes can share similar and overlapping elution profiles 

(Havugimana et al, 2012), CCC scores discriminate between random co-eluting and interacting 

protein pairs (Appendix Fig. S6). To improve the assignment of interaction probabilities, we 

also exploited a set of indirect interactions (e.g. genetic interaction, colocalization, etc.) from the 

STRING database (v.9.1) (Franceschini et al, 2013). These are based on orthologs from 

Saccharomyces cerevisiae (Dataset EV3) and a set of non-redundant structural interfaces that 

share homology with C. thermophilum predicted interfaces using Mechismo (Betts et al, 2015) 

(Materials and Methods; Dataset EV3). We combined these two datasets with the interaction 

probabilities derived from the elution profiles. We used a random forest classifier trained with 

randomly sampled sets of true-positive (N = 5,000) and true-negative (N = 5,000) interactions 

that we extracted from public sources after manual curation (PDB (Berman et al, 2000) and 

affinity purification-mass spectrometry (AP-MS) data (Benschop et al, 2010); Dataset EV3). We 

took a minimum interaction probability of 0.85 to construct a protein–protein interaction network 

(Appendix Figs. S7 to S10) that contains 679 proteins, 427 of which are not known to be 

members of protein complexes as their orthologs in yeast are not in any complex defined by PDB 

(Berman et al, 2000), AP-MS data (Benschop et al, 2010), or the Saccharomyces Genome 

Database (SGD; www.yeastgenome.org).  

From this network, we used a clustering method that efficiently discovers densely 

connected overlapping regions that represent protein complexes and communities (ClusterONE 

(Nepusz et al, 2012)). We systematized the recovery of protein complexes by an exhaustive 
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parameter search and benchmarking (Sardiu et al, 2009) with the set of known structures (from 

the PDB) and yeast complexes (from AP-MS data) (Dataset EV2; Materials and Methods). 

The optimal set of clustering parameters defines 21 clusters that account for protein complexes 

and 27 clusters accounting for protein communities that contain 108 interconnected protein 

complexes as subsets (Fig. 3). Importantly, varying the parameters had only marginal impact on 

the final protein content (Dataset EV3 and Materials and Methods), highlighting the 

robustness of the protein communities. Overall, the protein communities include 62% of the set 

of known protein complexes (the set of known PDB and AP-MS data, Dataset EV2) with 90% 

average coverage of their components (Fig. 3 and Dataset EV4). Of these communities, a well-

known example is the ribosome protein community, which comprises not only the stable 60S and 

40S ribosomal complexes but also the translation initiation factor eIF2B that is only transiently 

associated with the ribosome (Fig. 3, Appendix Fig. S8A). Other examples are novel such as the 

physical interaction between the Tup1-Cyc8 corepressor and a histone deacetylase complex 

(community #22), which is consistent with recent functional data demonstrating that these two 

complexes indeed cooperate to robustly repress transcription in yeast (Fleming et al, 2014). The 

analysis also captured a lipid anabolism metabolon (community #23), which not only includes 

the homomultimeric complexes of a cytochrome b reductase (Cbr1, which regulates the catalysis 

of sterol by biosynthetic enzymes) and a choline-phosphate cytidylyltransferase (Pct1, which is a 

rate-determining enzyme of the CDP-choline pathway for phosphatidylcholine synthesis), but 

also several enzymes in the sterol synthesis pathway. The transmembrane protein suppressor of 

choline sensitivity 2 (Scs2) is also observed, which is a known regulator of phospholipid 

metabolism. Its presence may seem peculiar at first; however, this provides physical evidence for 

a role for this community in validating the interconnectivity of lipid and sterol metabolism in 

fungi (Parks & Casey, 1995). Such coordinated regulatory effects may functionally optimize 

membrane plasticity and specificity (Ramgopal & Bloch, 1983). This community presumably 

localizes at the endoplasmic reticulum (ER)–plasma membrane (PM) interface as this is thought 

to be the location of all five predicted transmembrane proteins (Dataset EV4).  

The protein communities include associations that have been reported as transient, non-

stoichiometric or of low abundance in other organisms. For example, the 19S subunit of the 

proteasome was found to be associated with two known components, Upb6 and Nas6, and the 

20S subunit with two mutually exclusive alternative cap proteins, Blm10 and Cdc48 (Kish-Trier 

& Hill, 2013) (Fig. 3, Appendix Fig. S8A). The protein communities also capture transient 

interactions between nuclear transport receptors and transport channel nucleoporins – 

specifically, the interactions between karyopherins and the Nsp1 complex and the Nup159 

complex (Appendix Fig. S8B) – that have been elusive in standard biochemical experiments 

(Patel & Rexach, 2008) and that were recently found to have high off-rates in humans and yeast 

(Milles et al, 2015). Elsewhere, RNA polymerase II is found in a community with several 

splicing complexes, the U2 snRNP, the U4/U6.U5 tri-snRNP and the smD3 complexes 

(Appendix Fig. S8B, Dataset EV4). These spliceosomal machineries are known to interact with 

RNA polymerase II via the carboxy-terminal domain of its largest subunit, ensuring the tight 

coupling of mRNA transcription and splicing (Martins et al, 2011). We thus consider that our 

approach successfully identifies higher-order associations of complex core modules.  

This compendium of C. thermophilum protein communities (Dataset EV4), which are 

precisely assigned to specific and highly reproducible cellular fractions, represents an important 

resource for structural biologists (Appendix Fig. S10). It not only captures transient associations 
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but also identifies subunits of known complexes that have so far remained elusive. Due to the 

evolutionary distance between C. thermophilum and most well-established model organisms, 

subunits of even highly conserved core complexes are not necessarily identified (or 

unambiguously identified) by sequence alignments. As exemplified in Appendix Fig. S8A, the 

co-elution data can be used to identify such subunits and to assign orthology (details in Dataset 

EV4) by narrowing down a set of protein complex member candidates based on their 

experimental profiles (e.g. Appendix Fig. S8A). 

Characterization of new interaction interfaces by cross-linking mass-spectrometry. Physical 

interactions inferred from co-occurrences can also be indirect, and so next we characterized the 

interaction interfaces occurring between members of the predicted protein communities by 

applying proteome-wide cross-linking MS (XL-MS) to the fractions (see Material and 

Methods). To capture a large fraction of the interactome, we integrated three independent XL-

MS datasets, which we acquired using different complementary protocols, e.g. using different 

chemical cross-linkers, and both sequence-based and structure-based estimates of the false 

discovery rate (FDR)(see Material and Methods and Appendix Fig. S11). We identified 3,139 

high-quality cross-links (177 intermolecular and 2,962 intramolecular) (Table 1) with 

sequenced-based and structure-based FDRs of 10.0% and 12.0%, respectively (Dataset EV5). 

To validate the data, we checked which cross-linked peptide identifications are satisfied at the 

structural level, i.e. correspond to distances between Ca atoms of cross-linked lysine residues 

smaller than 33 Å (Lys(ca-ca) < 33 Å). A comparison with all structurally known complexes (see 

above and Dataset EV5) revealed that 73% of intermolecular and 84% of intramolecular cross-

links were satisfied. In addition, the measured Lys(ca-ca) distances effectively recapitulated the 

expected log-normal distributions covered by the disuccinimidyl suberate (DSS) and BS3 cross-

linkers, which further validates the calibration method we employed (Fig. 4A, Appendix Fig. 

S11). A significant fraction of the cross-linked peptides (N = 2,732) mapped interactions within 

single polypeptide chains and therefore probably define intramolecular contacts (Dataset EV5). 

The remaining 407 cross-linked peptides define 118 heteromultimeric (177 cross-links) and 121 

homomultimeric (230 cross-links) interfaces (Dataset EV5), which is largely consistent with our 

network analysis of protein communities (Fig. 3) and the proteins forming the interconnected 

complexes (Appendix Fig. S8A). Our analysis indicates that 135 (i.e. 56%) of these interfaces 

were previously unknown, and among the novel ones 11 are between different complexes within 

the same community (Dataset EV5, Appendix Figs. S11 to S12).  

Overall, the cross-linking benchmarking methodology presented here suggests strict, but 

high-quality, structural validation that may be applicable to any cross-linking study on complex 

mixtures of proteins or complexes. For example, the XL-MS dataset validates a community of 

heat shock complexes that elute with apparent molecular weights in the mega-dalton range (i.e 

much higher than known complexes). We mapped nine new interfaces within this community, 

based on XL-MS data that suggest the existence of a complex interaction network or a chaperone 

community that comprises chaperones and co-chaperones complexes (Dataset EV5). Our XL-

MS analysis further validates the notion of identifiable protein communities and is suggestive of 

several previously unknown interfaces that might be targeted for high-resolution structural 

studies. 

Characterization of structural signatures of protein communities from cell extracts using 

fatty acid synthase as an example. To demonstrate that crude cellular fractions are amenable to 

the structural characterization of protein communities, we examined the different fractions for 
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recurring structural signatures using EM (Fig. 4B to D) without adding any cross-linker for 

further stabilization of interactions. Specifically, we acquired a large set of negatively stained 

electron micrographs of all fractions, identified single particles and subjected them to 2D 

classification. We used cross-correlation to identify structural signatures recurring across 

neighboring fractions and the number of single particles contained within a class as a proxy for 

abundance (see Materials and Methods for details). Several structural signatures were 

observed, some of which were clearly recognizable as corresponding to known protein 

complexes, e.g. the fatty acid synthase (FAS), the proteasome, and the 40S and 60S ribosome 

(Fig. 4C). In these cases, both the quantitative MS and EM data were highly consistent with the 

molecular weight and size of the given complexes (Fig. 4B and C). These results confirm the 

high quality of our profiling data and illustrate how compositionally complex samples might be 

rapidly annotated on the structural level in the future. We also observed several potentially novel 

structural signatures using orthogonal biochemical separation (Fig. 4D), demonstrating that a 

wealth of structural information can be mined with this approach.  

We next analyzed one of these structural signatures – fungal FAS – in more detail. In our 

analysis, FAS is a structurally prominent, 2.6 MDa complex that contains six copies of all eight 

catalytic centers comprising the complete metabolic pathway for 16- and 18-carbon fatty acid 

production. It is known to functionally interact with various other enzymes (FAS1 and FAS2 

have 16 high-confidence interactors in S. cerevisiae according to STRING). Consistent with this 

notion, additional electron optical densities, probably corresponding to associated protein 

complexes, are observed that sometimes form linear elongated arrangements (Fig. 5A and 

Appendix Fig. S13). The majority locate outside the reaction chambers of the central wheel that 

is clearly manifested in 2D class averages (Fig. 5B and Appendix Fig. S13). These additional 

electron optical densities proximal to FAS are seen more frequently than would be expected by 

random chance (Fig. 5C). Their positioning at the entrance/exit tunnel of FAS (the malonyl 

transacylase domain) suggests the formation of a metabolon with other enzymes that deliver and 

accept substrates and products (as, for example, observed with acetyl-coA carboxylase (Acc1) in 

yeast using light microscopy (Suresh et al, 2015)). To biochemically validate this observation, 

we utilized the fact that unlike FAS, many enzymes involved in fatty acid metabolism are 

covalently modified with the co-factor biotin. We therefore affinity purified biotinylated proteins 

using avidin beads with subsequent XL-MS. The majority of the proteins in the eluate were 

known to be natively biotinylated except for CTHT_0013320 (MCC2) (the non-biotin-containing 

subunit of a carboxylase) and both subunits of FAS (CTHT_0037740, CTHT_0037750). We 

found the flexible acyl carrier protein (ACP) and malonyl/palmitoyl transferase (MPT) domains 

(that catalyze the first step in FA synthesis) to be cross-linked with the two subunits of a 

carboxylase (CoA carboxylase beta-like; MCC2 and CTHT_0015140 (DUR1,2)) (Fig. 5D). This 

interface characterized by cross-linking matches the one seen on the original cryoEM images and 

the 2D class averages and further supports the notion that a metabolon comprising other enzymes 

that deliver and accept substrates and products has been captured. Further corroborating the 

abovementioned findings, our SEC-MS co-elution data suggest an association of FAS with the 

same carboxylase (Dataset EV1). The organization of these domains in close proximity to each 

other implies a mechanism of substrate delivery from the carboxylase to FAS (Fig. 5E). It is 

likely that this could be an alternate substrate for either odd-chain fatty acid synthesis (Fulco, 

1983) or, less likely, fatty acid branching (Kolattukudy et al, 1987), provided via direct substrate 

channeling (Fig. 5E). FAS and the carboxylase are known to be two independent complexes and 

would therefore fit our definition of a community. 
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We next set out to test whether high-resolution structure determination is possible in 

these crude extracts. A high resolution structure of FAS in isolation has been determined by X-

ray crystallography (Jenni et al, 2007; Leibundgut et al, 2007; Lomakin et al, 2007). Using 

cryoEM (Boehringer et al, 2013; Gipson et al, 2010), certain regions – in particular the lid – 

remained unresolved, probably due to intrinsic flexibility. We acquired 1,597 cryo electron 

micrographs of the relevant biochemical fraction and identified 7,370 single particles displaying 

the relevant structural signature. Structural analysis and 3D classification resulted in a 

reconstruction at ~4.7 Å containing only 3,933 particles (Appendix Fig. S14), demonstrating 

that high-resolution structural analysis by cryoEM is feasible in complex cellular fractions. 

Overall, the cryoEM map of ctFAS recapitulated the X-ray structure of fungal FAS relatively 

well (Fig. 6A to C), including high-resolution details such as the helical pitch in the central 

wheel (Fig. 6B, Appendix Fig. S15). In contrast to previous cryoEM structures of fungal FAS, 

even the lid region was clearly resolved (Fig. 6C, Appendix Fig. S15). Thermophilic proteins 

are more susceptible to structural analysis by X-ray crystallography and NMR because they 

contain less flexible loops (Amlacher et al, 2011; Lapinaite et al, 2013). Our data indicate that 

this also extends to cryoEM, possibly because of reduced flexibility. Strikingly, the cryoEM 

structure did exhibit additional low-resolution density outside the reaction chambers that 

probably corresponds to the community discussed above (Fig. 6D). Further, the ACP that 

iteratively shuttles the substrate within the catalytic chamber of FAS (Jenni et al, 2007) was 

captured at a different active site, albeit at slightly reduced resolution (Fig. 6E and Appendix 

Fig. S15). In previous structures, ACP located near the ketoacyl synthase domain involved in the 

first step in fatty acid synthesis (Jenni et al, 2007).  Here, ACP is located in the vicinity of the 

enoyl reductase (ER) (Fig. 6E to F and Appendix Fig. S15) that reduces the α-β-double-bond of 

the acyl chain to a single bond. This final catalytic step in acyl chain metabolism is targeted by 

important antibacterial and antifungal drugs (e.g. Triclosan and Triclocarban, Atromentin and 

Leucomelone).  

Discussion:  

The hypothesis of an intermediate layer of molecular sociology between supramolecular 

assemblies and organelles (Srere, 1987; Wu & Minteer, 2015) states that protein complexes 

spatially and temporally co-exist and directly interact with each other or individual proteins to 

form higher-order assemblies within specific cellular compartments, referred to here as protein 

communities. Such communities would be capable of channeling substrates for efficiency, could 

regulate pathway flux by transient binding kinetics and would be formed by higher-order 

interactions (e.g. macromolecular crowding, excluded volume effects, "stickiness" of the 

cytoplasm, hydrodynamic interactions etc.) (Srere, 1987) and are attractive targets for 

biotechnology to increase reaction efficiencies (Wheeldon et al, 2016). Until now, a direct 

visualization or comprehensive analysis of such complexity was missing.  

Although cellular fractions are more similar to the cellular environment than highly 

purified samples, they are less so than vitreous sections of the true cellular environment that 

nowadays can be studied using cryo electron tomography but not by MS methods. We have 

shown that it is possible to capture at least some aspects of these protein communities in a 

systematic way using an integrative structural biology approach on cell fractions of the 

eukaryotic thermophile C. thermophilum, a model organism for structural biology as its proteins 

exhibit superior biochemical stability (Amlacher et al, 2011; Lin et al, 2016). The fractionation 

of cell extracts was postulated to retain close to native cellular interactions decades ago 
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(Mowbray & Moses, 1976) but due to the molecular heterogeneity of these extracts, it was long 

thought to be prohibitive to structural characterization. In this study, we demonstrate that cellular 

fractions preserve basic principles of proteome organization and enable the identification of 

protein communities that are directly amenable to high-resolution cryoEM analyses. As a case in 

point for the latter, we structurally characterized new catalytic steps in fatty acid synthesis as 

well as some of the interfaces between FAS and other molecules using cryoEM in this setting. A 

wealth of other recurring structural signatures were identified, some readily recognizable but 

others novel and requiring further molecular characterization – a promising finding for structural 

and molecular biologists.  

Overall, we designed an integrative approach specifically designed to identify and 

structurally characterize higher-order biomolecular assemblies. The specific elements implied the 

use of a chromatographic column to separate high molecular weight cellular assemblies and the 

choice of a thermophilic organism (to minimize the disassembly of protein-protein interactions 

upon lysis). The follow up analyses are also tuned to cope with the large size of the communities 

(i.e. XL-MS with a cross-linker that identifies interactions up to 3 nm distance, and EM methods 

which are advantageous for higher-order assemblies of large molecular weight). The method 

described here is dedicated to the identification of protein communities, although of course other 

biomolecules such as nucleic acids or lipids might be part of the identified communities and 

contribute to their association. The combination with other identification strategies such as RNA 

sequencing and small molecule MS might further enlighten this aspect in the future. The broader 

applicability of cryoEM to non-purified samples will be limited by the abundance and the 

stability of the protein communities during the lysis procedure. However, methods to improve 

the stability of these interactions, potentially with cross-linking prior to fractionation or lysis 

would allow discovery of further dynamic interactions and protein communities, and would 

allow further simplification of the protein mixtures for structural study using this pipeline. 

Further advances in EM acquisition and data analysis methods might further improve the 

coverage and identification of protein communities in the future. 

The emerging in cellulo structural biology approaches, based on the electron tomographic 

analyses of entire cells, have already started to produce the next generation of “big data”. These 

approaches hold great potential to structurally define protein communities in their native 

environment, the cell. They however fall short in the biochemical and molecular identification of 

these communities, as single-cell mass spectrometry is likely to remain limited to the few most 

abundant proteins for the near future. We anticipate that our approach that targets crude cellular 

extracts of intermediate molecular complexity as a proxy for the cellular milieu will crucially 

complement in cellulo methods because it allows a direct correlation between structural and 

molecular signatures.  

Materials and Methods:  
Separation of C. thermophilum communities. C. thermophilum communities were enriched 

from cell lysates by spin filtration and fractionated using a Biosep SEC-S4000 (7.8 x 600) size 

exclusion chromatography (SEC) column from Phenomenex, Germany (see extended Materials 

and Methods).  

Protein co-elution prediction and mass spectrometry. Protein abundances were recorded from 

each SEC fraction by liquid chromatography-mass spectrometry (LC-MS). Prediction of protein 

co-elution was performed by Pearson correlation of protein abundance profiles. LC-MS data 

were processed using the MaxQuant (Cox & Mann, 2008). 
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Cross-linking/mass spectrometry. The cross-linking datasets searched with xQuest: Isotope-

coded disuccinimidyl-subarate (DSS; Creative Molecules) was used to perform cross-linking 

reactions as described previously (Walzthoeni et al, 2012). Cross-linked peptides were enriched 

by gel filtration before LC-MS analysis. All LC-MS data were obtained from an Orbitrap Velos 

Pro instrument (Thermo Scientific). Search and FDR were performed with the xQuest/xProphet 

(Leitner et al, 2014) software. For the cross-linking dataset searched with Xi: Samples were 

cross-linked using a 1:1 w:w ratio of protein to BS3 (Thermo Scientific). Cross-linked peptides 

were enriched by gel filtration before LC-MS analysis. All LC-MS data were obtained from an 

Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Scientific). Search and FDR were 

performed with the Xi (Giese et al, 2016) and XiFDR (Fischer & Rappsilber, 2017) software 

suites. 

Prediction of protein communities. For each protein pair, interactions based on structural 

homologs were predicted using Mechismo (Betts et al, 2015), Saccharomyces cerevisiae 

orthologs were found using eggNOG (Jensen et al, 2008) and interaction data (excluding 

physical interactions) were downloaded from String (v.9.1) (Franceschini et al, 2013). These data 

were combined with co-elution data from the SEC analysis using a Random Forest (RF) 

classifier and a manually curated training set of reference interactions to filter out spurious 

connections and infer a network of high-confidence predicted interactions. Protein complexes 

and communities were inferred using ClusterONE (Nepusz et al, 2012). The cross-linking ld 

score (Walzthoeni et al, 2012) was calibrated on distance restraints imposed by the cross-linker. 

Cross-linking distances were calculated by Xwalk (Kahraman et al, 2011) using structural 

models.   

Structure prediction of proteins participating in high-molecular weight assemblies. 
Prediction of the structure of all 1,176 identified proteins was performed with iTASSER v4.2 

(Yang et al, 2015) and Modeller 9v2 (Sali & Blundell, 1993). The best predicted model was 

selected according to its respective c-score (Roy et al, 2010). Details for model quality (for those 

with >30% of sequence identity and coverage) are shown in Appendix Fig. S2. 

Protein complex assignment using Protein Data Bank and calibration of cross-linking 

quality. Each of the 1,176 proteins found in total in all three biological replicates were submitted 

to the NCBI BLAST server (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and searched against the 

Protein Data Bank (PDB; www.pdb.org). A threshold of 30% of sequence identity was assigned. 

A decision on the assembly was taken after back-BLASTing the rest of the subunits, if any, of 

the PDB structure to the C. thermophilum proteome. All results are included in Dataset EV2.  

Modeling of protein interfaces using cross-linking data. HADDOCK was used for modeling 

protein interfaces (de Vries et al, 2010; van Zundert et al, 2015). Cross-linking data were 

implemented as interaction restraints, set to have an effective (and maximum) Cα-Cα distance of 

35.2 Å, whereas the minimum distance was defined only by energetics.  

Negative-stain electron microscopy and 2D class averaging. Samples were directly deposited 

on glow-discharged (60 sec) Quantifoil®, type 300 mesh grids and negative-stained with uranyl 

acetate 2%(w/w) water. Recording of data was performed with a side-mounted 1K CCD Camera 

(SIS). After data acquisition (pixel size=7.1 Å), E2BOXER was used for particle picking (37,424 

particles were picked out of 30 fractions). Class averaging was performed using RELION 1.2 

(Scheres, 2012a; Scheres, 2012b). Cross-correlation of final class averages was performed using 

MATLAB v7.4. 

ctFAS enzyme preparation and vitrification for cryoEM. ctFAS was ~50% enriched (see 

Appendix Fig. S14) and overall protein concentration was determined to be ~40 ng/μl. Samples 
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were then deposited on glow-discharged (60 sec) carbon-coated holey grids from Quantifoil®, 

type R2/1. A FEI Vitrobot® was used for plunge-freezing. In short, humidity was set to 70%, 

blotting and drain time to 3 and 0.5 sec, respectively. Sample volume applied was 3 μl and blot 

offset was set to -3 mm. 

CryoEM image acquisition, data processing and 3D reconstruction. The vitrified samples 

were recorded on a FEI Titan Krios microscope at 300 kV. Pixel size was set to 2.16 Å and a FEI 

Falcon 2 camera was used in movie mode. Total dose applied was summed to 48 e–/Å2, but the 

last frame was used only for particle picking. A total number of 13,419 micrographs were 

acquired in 21 hours (1 frame/6 sec; 1 movie/42 sec). Motion correction was applied to acquired 

micrographs (Li et al, 2013). E2BOXER was used for particle picking. CTFFIND was used for 

CTF correction (Rohou & Grigorieff, 2015). The RELION 1.2 package (Scheres, 2012a; 

Scheres, 2012b) was then used for 2D class averaging, 3D classification and 3D reconstruction 

of the density map. Default Gaussian mask from RELION 1.2 gave a calculated resolution 

(Gold-standard FSC=0.143) of 4.7 Å. 

Modeling of the ACP-enoyl reductase domain interaction and the FAS-carboxylase 

metabolon. Models of C. thermophilum acyl carrier protein (ACP) and enoyl reductase (ER) 

domains were generated using Modeller 9v2 and chosen structural homologs were selected from 

the yeast homolog with resolved densities for both (Leibundgut et al, 2007). Additional density 

of ACP was observed close to the ER domain of fatty acid synthase (FAS); thus, coarse 

placement of the ACP was performed using CHIMERA (Pettersen et al, 2004) and subsequently 

fitted to the density. Energy calculations were performed as previously described (Kastritis & 

Bonvin, 2010; Kastritis et al, 2014). Correlation of van der Waals energy with experimentally 

measured equilibrium dissociation constants for known complexes is derived from (Kastritis et 

al, 2014).  

 

Data and software availability.  

The primary datasets produced in this study are available in the following databases: 

-Structural data: EMDB EMD-3757 http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-3757 

-Proteomics data: PRIDE PXD006660 http://www.ebi.ac.uk/pride/archive/projects/PXD006660 

-Cross-linking data: PRIDE PXD006626  http://www.ebi.ac.uk/pride/archive/projects/PXD006626    

-List of identified proteins: Dataset EV1 

-List of protein complexes: Dataset EV2 

-Results of network benchmarking: Dataset EV3  

-List of protein communities: Dataset EV4 

-Results from the cross-linking experiments: Dataset EV5 

-Cytoscape file: Dataset EV6 
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Figure Legends  

Fig. 1 Overview of integrative structural network biology of native cell extracts in a 

thermophilic eukaryote. We combined computational modeling approaches adapted from 

network biology (molecular profiling) with molecular biophysics, electron microscopy (EM) 

(structural profiling) and quantitative and cross-linking mass spectrometry (interface profiling) to 

systematically chart and characterize the organization of protein complexes into functional, local 

communities. Large-scale electron microscopy and cross-linking mass spectrometry are used as 

validation tools. 

Fig. 2  Identification of protein complexes and communities in the cellular extracts. (A) 

Elution of selected protein complexes as a function of their retention times (see Appendix Fig. 

S4 for their corresponding subunit elutions). (B) Scatter plot indicating discrepancies in the 

expected and measured molecular weights of 102 protein complexes that elute as a single peak; 

50% of protein complexes are observed to have higher molecular weights than structurally 

characterized, indicating that they are organized in higher-order assemblies.  

Fig. 3 Network derived from large-scale fractionation predicts 48 protein communities. 
Integration of experimental elution data, known functional associations and predicted interaction 

interfaces from homologous proteins allow the creation of a high-quality network with 

interconnected protein complexes (Appendix Figs. S8-S10). Here, known protein complexes are 

shown in blue and other physically associated proteins in grey, predicted interactions of 

complexes as grey lines and cross-links as red lines, cross-links between different subunits of a 

heteromultimeric complex are represented with red loops (see insert). Communities containing 

multiple complexes are highlighted with yellow; numbering and naming of complexes and 

communities is described in the legend of Appendix Fig. S9.  

Fig. 4 Higher-order assemblies identified by proteome-wide cross-linking mass 

spectrometry, biomolecular modeling and negative-stain electron microscopy. (A) Distance 

distributions of identified cross-links on top of the modeled protein complexes and identification 

of novel interactions. Satisfied distances are shown in blue and over-length cross-links are shown 

in red. (B) Negatively stained electron micrographs of fractions 3-7 and 27 directly derived from 

size exclusion chromatography showing the structural signatures and their structural integrity 

within the fractions. Decreasing molecular weight correlates with increased protein concentration 

as a function of protein complex elution is highlighted. (C) Abundance profiles as determined by 

quantitative mass spectrometry correlate with the number of observed single particles of the 

corresponding structural signature within the negative-staining electron micrographs; shown for 

fatty acid synthase, 20S proteasome, 60S and 40S ribosome (the number of particles per image 

per fraction is indicated below the class averages). (D) Simplification of lysate (collecting only 

the flow-through from anion exchange chromatography) prior to SEC separation allows class-

averaging of structural signatures from complex fractions that were previously too low abundant. 

Proteins identified in this simplified fraction are found in Dataset EV4. 

Fig. 5 Visualization of transient interactions in fatty acid synthesis. (A) Communities in fatty 

acid metabolism and the quantification of intra-community distances within cryo-electron 

micrographs. Fatty acid synthase (FAS) frequently interacts with other sizeable protein 

complexes in a linear ‘pearl-string-like’ arrangement and usually localizes at the edges of the 

community. Scale bars correspond to 25 nm. FAS particles (circles) and their nearest neighbors 
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(arrow heads) are indicated. (B) Additional density outside of the ctFAS dome is observed in 

~10% of the single particles; 2D class averages shown at the bottom. (C) Related to (A). 

Calculation of minimum distances between pairs of FAS molecules as well as FAS molecules 

and their closest non-FAS neighbors in comparison to random distributions. Whereas FAS 

molecules are randomly distributed, their binders are not, confirming physical interactions. 

Supervised picking means that all single-particles were manually picked from the images. 

Randomized distance means that these manually picked particles were assigned random 

coordinates in each image (randomization of x,y coordinates considering image borders) and 

then their distance is calculated. (D) Cross-linking mass spectrometry data show that the binder 

is a carboxylase that is bound to the malonyl transacylase domain and acyl carrier protein (ACP) 

is in the vicinity, considering cross-link length and the positions of the lysine on the ctFAS 

structure. Cross-links come from both affinity-purified and fractionated cell extracts. (E) The 

molecular mechanisms in fatty acid synthesis (Wakil et al, 1983), and the relevance of the 

position of the ACP (see Fig. 6 for details) and carboxylase to the catalytic cycle is indicated (see 

text). ACP, acyl carrier protein; CoA, acetyl-Coenzyme A; MPT, malonyl/palmitoyl transferase; 

KS, ketoacyl synthase; KR, ketoacyl reductase; DH, dehydratase; ER, enoyl reductase; AT, 

acetyltransferase. 

 

Fig. 6 CryoEM structure of fatty acid synthase resolved to 4.7 Å as obtained from cryo 

electron micrographs of fraction numbers 7-9. (A) The cryoEM of C. thermophilum fatty acid 

synthase (ctFAS) map is shown isosurface rendered and superimposed with the fitted X-ray 

structure of yeast FAS (Jenni et al, 2007). The domes and the cap show the unambiguous fit of α-

helices and β-strands. (B) A slice through the central wheel of fungal FAS. The pitch of α-helices 

is resolved. (C) As for (B) but sliced through the dome structure. (D) Location of acyl carrier 

protein (ACP) within the cryoEM map of ctFAS and the position of additional density outside 

the dome. (E) Fit of ACP in the cryoEM map of ctFAS and comparison with the 

crystallographically determined location in yeast FAS; additional density within the active site, 

possibly resembling the acyl chain bound on the ACP is observed. (F) Molecular model of the 

interaction between the ACP and the ER domains of ctFAS in cartoon representation. The model 

was derived from a rigid fit from (B) and subsequently flexibly refined for clash removal and 

interface energetics optimization. 

Tables 

 

Table 1. Cross-linking statistics at a false discovery rate of 10%. 
 

FDR 10% Cross-links Structurally mapped Total interfaces 
covered 

Novel 
interfaces 

Total cross-
links 3139 931 239 135 
Cross-links on 
monomers 2732 851 - - 
Cross-links on 
homomultimers 230 36* 121 69 
Cross-links on 
heteromultimers 177 44 118 66 
*these cross-links show decrease in intra-residue distance when measured on known homomultimers by 26.3±13.4Å. 
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APPENDIX: 

Materials and Methods 

Appendix Figs. S1 to S15  

Datasets EV1 to EV5 
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Fig. 1 Overview of integrative structural network biology of native cell extracts in a 

thermophilic eukaryote. We combined computational modeling approaches adapted from 

network biology (molecular profiling) with molecular biophysics, electron microscopy (EM) 

(structural profiling) and quantitative and cross-linking mass spectrometry (interface profiling) to 

systematically chart and characterize the organization of protein complexes into functional, local 

communities. Large-scale electron microscopy and cross-linking mass spectrometry are used as 

validation tools. 
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Fig. 2  Identification of protein complexes and communities in the cellular extracts. (A) 

Elution of selected protein complexes as a function of their retention times (see Appendix Fig. 

S4 for their corresponding subunit elutions). (B) Scatter plot indicating discrepancies in the 

expected and measured molecular weights of 102 protein complexes that elute as a single peak; 

50% of protein complexes are observed to have higher molecular weights than structurally 

characterized, indicating that they are organized in higher-order assemblies.  
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Fig. 3 Network derived from large-scale fractionation predicts 48 protein communities. 
Integration of experimental elution data, known functional associations and predicted interaction 

interfaces from homologous proteins allow the creation of a high-quality network with 

interconnected protein complexes (Appendix Figs. S8-S10). Here, known protein complexes are 

shown in blue and other physically associated proteins in grey, predicted interactions of 

complexes as grey lines and cross-links as red lines, cross-links between different subunits of a 

heteromultimeric complex are represented with red loops (see insert). Communities containing 

multiple complexes are highlighted with yellow; numbering and naming of complexes and 

communities is described in the legend of Appendix Fig. S9.  
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Fig. 4 Higher-order assemblies identified by proteome-wide cross-linking mass 

spectrometry, biomolecular modeling and negative-stain electron microscopy. (A) Distance 

distributions of identified cross-links on top of the modeled protein complexes and identification 

of novel interactions. Satisfied distances are shown in blue and over-length cross-links are shown 

in red. (B) Negatively stained electron micrographs of fractions 3-7 and 27 directly derived from 

size exclusion chromatography showing the structural signatures and their structural integrity 

within the fractions. Decreasing molecular weight correlates with increased protein concentration 

as a function of protein complex elution is highlighted. (C) Abundance profiles as determined by 

quantitative mass spectrometry correlate with the number of observed single particles of the 

corresponding structural signature within the negative-staining electron micrographs; shown for 

fatty acid synthase, 20S proteasome, 60S and 40S ribosome (the number of particles per image 

per fraction is indicated below the class averages). (D) Simplification of lysate (collecting only 

the flow-through from anion exchange chromatography) prior to SEC separation allows class-

averaging of structural signatures from complex fractions that were previously too low abundant. 

Proteins identified in this simplified fraction are found in Dataset EV4. 
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Fig. 5 Visualization of transient interactions in fatty acid synthesis. (A) Communities in fatty 

acid metabolism and the quantification of intra-community distances within cryo-electron 

micrographs. Fatty acid synthase (FAS) frequently interacts with other sizeable protein 

complexes in a linear ‘pearl-string-like’ arrangement and usually localizes at the edges of the 

community. Scale bars correspond to 25 nm. FAS particles (circles) and their nearest neighbors 

(arrow heads) are indicated. (B) Additional density outside of the ctFAS dome is observed in 

~10% of the single particles; 2D class averages shown at the bottom. (C) Related to (A). 

Calculation of minimum distances between pairs of FAS molecules as well as FAS molecules 

and their closest non-FAS neighbors in comparison to random distributions. Whereas FAS 

molecules are randomly distributed, their binders are not, confirming physical interactions. 

Supervised picking means that all single-particles were manually picked from the images. 

Randomized distance means that these manually picked particles were assigned random 

coordinates in each image (randomization of x,y coordinates considering image borders) and 

then their distance is calculated. (D) Cross-linking mass spectrometry data show that the binder 

is a carboxylase that is bound to the malonyl transacylase domain and acyl carrier protein (ACP) 
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is in the vicinity, considering cross-link length and the positions of the lysine on the ctFAS 

structure. Cross-links come from both affinity-purified and fractionated cell extracts. (E) The 

molecular mechanisms in fatty acid synthesis (Wakil et al, 1983), and the relevance of the 

position of the ACP (see Fig. 6 for details) and carboxylase to the catalytic cycle is indicated (see 

text). ACP, acyl carrier protein; CoA, acetyl-Coenzyme A; MPT, malonyl/palmitoyl transferase; 

KS, ketoacyl synthase; KR, ketoacyl reductase; DH, dehydratase; ER, enoyl reductase; AT, 

acetyltransferase. 

 

 

 

 
Fig. 6 CryoEM structure of fatty acid synthase resolved to 4.7 Å as obtained from cryo 

electron micrographs of fraction numbers 7-9. (A) The cryoEM of C. thermophilum fatty acid 

synthase (ctFAS) map is shown isosurface rendered and superimposed with the fitted X-ray 

structure of yeast FAS (Jenni et al, 2007). The domes and the cap show the unambiguous fit of α-

helices and β-strands. (B) A slice through the central wheel of fungal FAS. The pitch of α-helices 

is resolved. (C) As for (B) but sliced through the dome structure. (D) Location of acyl carrier 

protein (ACP) within the cryoEM map of ctFAS and the position of additional density outside 

the dome. (E) Fit of ACP in the cryoEM map of ctFAS and comparison with the 

crystallographically determined location in yeast FAS; additional density within the active site, 

possibly resembling the acyl chain bound on the ACP is observed. (F) Molecular model of the 

interaction between the ACP and the ER domains of ctFAS in cartoon representation. The model 

was derived from a rigid fit from (B) and subsequently flexibly refined for clash removal and 

interface energetics optimization. 
 


